
## Christopher D G Harley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9144080/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                | lF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The impacts of climate change in coastal marine systems. Ecology Letters, 2006, 9, 228-241.                                                                                                                            | 6.4  | 1,997     |
| 2  | Increased temperature variation poses a greater risk to species than climate warming. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132612.                                                    | 2.6  | 674       |
| 3  | Climate Change and Latitudinal Patterns of Intertidal Thermal Stress. Science, 2002, 298, 1015-1017.                                                                                                                   | 12.6 | 603       |
| 4  | Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures?. Ecology Letters, 2016, 19, 1372-1385.                                                                    | 6.4  | 587       |
| 5  | EFFECTS OF CLIMATE CHANGE ON GLOBAL SEAWEED COMMUNITIES. Journal of Phycology, 2012, 48, 1064-1078.                                                                                                                    | 2.3  | 531       |
| 6  | Climate Change, Keystone Predation, and Biodiversity Loss. Science, 2011, 334, 1124-1127.                                                                                                                              | 12.6 | 441       |
| 7  | MOSAIC PATTERNS OF THERMAL STRESS IN THE ROCKY INTERTIDAL ZONE: IMPLICATIONS FOR CLIMATE CHANGE. Ecological Monographs, 2006, 76, 461-479.                                                                             | 5.4  | 392       |
| 8  | Community ecology in a warming world: The influence of temperature on interspecific interactions in marine systems. Journal of Experimental Marine Biology and Ecology, 2011, 400, 218-226.                            | 1.5  | 361       |
| 9  | A bioenergetic framework for the temperature dependence of trophic interactions. Ecology Letters, 2014, 17, 902-914.                                                                                                   | 6.4  | 268       |
| 10 | Ocean acidification through the lens of ecological theory. Ecology, 2015, 96, 3-15.                                                                                                                                    | 3.2  | 237       |
| 11 | Local―and regionalâ€scale effects of wave exposure, thermal stress, and absolute versus effective shore<br>level on patterns of intertidal zonation. Limnology and Oceanography, 2003, 48, 1498-1508.                  | 3.1  | 226       |
| 12 | Quantifying Rates of Evolutionary Adaptation in Response to Ocean Acidification. PLoS ONE, 2011, 6, e22881.                                                                                                            | 2.5  | 212       |
| 13 | Elevated water temperature and carbon dioxide concentration increase the growth of a keystone<br>echinoderm. Proceedings of the National Academy of Sciences of the United States of America, 2009,<br>106, 9316-9321. | 7.1  | 202       |
| 14 | Tidal dynamics, topographic orientation, and temperature-mediated mass mortalities on rocky shores.<br>Marine Ecology - Progress Series, 2008, 371, 37-46.                                                             | 1.9  | 193       |
| 15 | TROUBLE ON OILED WATERS: Lessons from theExxon ValdezOil Spill. Annual Review of Ecology,<br>Evolution, and Systematics, 1996, 27, 197-235.                                                                            | 6.7  | 164       |
| 16 | Ocean acidification can mediate biodiversity shifts by changing biogenic habitat. Nature Climate<br>Change, 2017, 7, 81-85.                                                                                            | 18.8 | 164       |
| 17 | On the prediction of extreme ecological events. Ecological Monographs, 2009, 79, 397-421.                                                                                                                              | 5.4  | 136       |
| 18 | Embracing interactions in ocean acidification research: confronting multiple stressor scenarios and context dependence. Biology Letters, 2017, 13, 20160802.                                                           | 2.3  | 121       |

CHRISTOPHER D G HARLEY

| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | QUANTIFYING SCALE IN ECOLOGY: LESSONS FROM AWAVE-SWEPT SHORE. Ecological Monographs, 2004, 74, 513-532.                                                                                                                                       | 5.4 | 117       |
| 20 | The role of temperature and desiccation stress in limiting the localâ€scale distribution of the owl limpet, <i>Lottia gigantea</i> . Functional Ecology, 2009, 23, 756-767.                                                                   | 3.6 | 115       |
| 21 | Plants Versus Animals: Do They Deal with Stress in Different Ways?. Integrative and Comparative Biology, 2002, 42, 415-423.                                                                                                                   | 2.0 | 110       |
| 22 | The Body Size Dependence of Trophic Cascades. American Naturalist, 2015, 185, 354-366.                                                                                                                                                        | 2.1 | 110       |
| 23 | Effects of temperature, season and locality on wasting disease in the keystone predatory sea star<br>Pisaster ochraceus. Diseases of Aquatic Organisms, 2009, 86, 245-251.                                                                    | 1.0 | 109       |
| 24 | Beyond long-term averages: making biological sense of a rapidly changing world. Climate Change<br>Responses, 2014, 1, .                                                                                                                       | 2.6 | 106       |
| 25 | Elevated seawater CO2 concentrations impair larval development and reduce larval survival in<br>endangered northern abalone (Haliotis kamtschatkana). Journal of Experimental Marine Biology and<br>Ecology, 2011, 400, 272-277.              | 1.5 | 103       |
| 26 | Contingencies and compounded rare perturbations dictate sudden distributional shifts during<br>periods of gradual climate change. Proceedings of the National Academy of Sciences of the United<br>States of America, 2009, 106, 11172-11176. | 7.1 | 101       |
| 27 | ABIOTIC STRESS AND HERBIVORY INTERACT TO SET RANGE LIMITS ACROSS A TWO-DIMENSIONAL STRESS GRADIENT. Ecology, 2003, 84, 1477-1488.                                                                                                             | 3.2 | 95        |
| 28 | Hot limpets: predicting body temperature in a conductance-mediated thermal system. Journal of Experimental Biology, 2006, 209, 2409-2419.                                                                                                     | 1.7 | 95        |
| 29 | Positive effects of a dominant invader on introduced and native mudflat species. Marine Ecology -<br>Progress Series, 2005, 289, 109-116.                                                                                                     | 1.9 | 91        |
| 30 | Elevated CO 2 affects shell dissolution rate but not calcification rate in a marine snail. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2553-2558.                                                                     | 2.6 | 91        |
| 31 | Thermal stress on intertidal limpets: long-term hindcasts and lethal limits. Journal of Experimental<br>Biology, 2006, 209, 2420-2431.                                                                                                        | 1.7 | 85        |
| 32 | Large-scale impacts of sea star wasting disease (SSWD) on intertidal sea stars and implications for recovery. PLoS ONE, 2018, 13, e0192870.                                                                                                   | 2.5 | 81        |
| 33 | Thermal stress and morphological adaptations in limpets. Functional Ecology, 2009, 23, 292-301.                                                                                                                                               | 3.6 | 72        |
| 34 | Elevated pCO2 increases sperm limitation and risk of polyspermy in the red sea urchin<br>Strongylocentrotus franciscanus. Global Change Biology, 2011, 17, 163-171.                                                                           | 9.5 | 71        |
| 35 | Long-term, high frequency in situ measurements of intertidal mussel bed temperatures using biomimetic sensors. Scientific Data, 2016, 3, 160087.                                                                                              | 5.3 | 69        |
| 36 | How ocean acidification can benefit calcifiers. Current Biology, 2017, 27, R95-R96.                                                                                                                                                           | 3.9 | 67        |

CHRISTOPHER D G HARLEY

| #  | Article                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Conceptualizing ecosystem tipping points within a physiological framework. Ecology and Evolution, 2017, 7, 6035-6045.                                                                                | 1.9  | 64        |
| 38 | Color Polymorphism and Genetic Structure in the Sea Star <i>Pisaster ochraceus</i> . Biological<br>Bulletin, 2006, 211, 248-262.                                                                     | 1.8  | 52        |
| 39 | Cascading social-ecological costs and benefits triggered by a recovering keystone predator. Science, 2020, 368, 1243-1247.                                                                           | 12.6 | 52        |
| 40 | The duality of ocean acidification as a resource and a stressor. Ecology, 2018, 99, 1005-1010.                                                                                                       | 3.2  | 51        |
| 41 | The effects of temperature on producers, consumers, and plant–herbivore interactions in an intertidal community. Journal of Experimental Marine Biology and Ecology, 2007, 348, 162-173.             | 1.5  | 45        |
| 42 | Recruitment tolerance to increased temperature present across multiple kelp clades. Ecology, 2019,<br>100, e02594.                                                                                   | 3.2  | 43        |
| 43 | Effects of physical ecosystem engineering and herbivory on intertidal community structure. Marine<br>Ecology - Progress Series, 2006, 317, 29-39.                                                    | 1.9  | 43        |
| 44 | Nitrogen effects on an interaction chain in a salt marsh community. Oecologia, 1998, 117, 266-272.                                                                                                   | 2.0  | 42        |
| 45 | Intertidal community responses to fieldâ€based experimental warming. Oikos, 2015, 124, 888-898.                                                                                                      | 2.7  | 39        |
| 46 | Natural acidification changes the timing and rate of succession, alters community structure, and increases homogeneity in marine biofouling communities. Global Change Biology, 2018, 24, e112-e127. | 9.5  | 37        |
| 47 | Responses to low salinity by the sea star <i>Pisaster ochraceus</i> from high―and lowâ€salinity populations. Invertebrate Biology, 2009, 128, 381-390.                                               | 0.9  | 33        |
| 48 | Survival of the weakest: increased frond mechanical strength in a waveâ€swept kelp inhibits<br>selfâ€pruning and increases wholeâ€plant mortality. Functional Ecology, 2013, 27, 439-445.            | 3.6  | 33        |
| 49 | Non-linear density-dependent effects of an intertidal ecosystem engineer. Oecologia, 2011, 166, 531-541.                                                                                             | 2.0  | 31        |
| 50 | The natural history, thermal physiology, and ecological impacts of intertidal mesopredators,<br><i>Oedoparena</i> spp. (Diptera: Dryomyzidae). Invertebrate Biology, 2003, 122, 61-73.               | 0.9  | 29        |
| 51 | Light availability indirectly limits herbivore growth and abundance in a high rocky intertidal community during the winter. Limnology and Oceanography, 2002, 47, 1217-1222.                         | 3.1  | 26        |
| 52 | Divergent growth strategies between red algae and kelps influence biomechanical properties.<br>American Journal of Botany, 2015, 102, 1938-1944.                                                     | 1.7  | 26        |
| 53 | Sea Otters Homogenize Mussel Beds and Reduce Habitat Provisioning in a Rocky Intertidal Ecosystem.<br>PLoS ONE, 2013, 8, e65435.                                                                     | 2.5  | 22        |
| 54 | Herbivory enables marine communities to resist warming. Science Advances, 2017, 3, e1701349.                                                                                                         | 10.3 | 21        |

## CHRISTOPHER D G HARLEY

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Whole-organism responses to constant temperatures do not predict responses to variable<br>temperatures in the ecosystem engineer <i>Mytilus trossulus</i> . Proceedings of the Royal Society B:<br>Biological Sciences, 2021, 288, 20202968. | 2.6 | 21        |
| 56 | Recovery of the brown alga Fucus gardneri following a range of removal intensities. Aquatic Botany, 2001, 71, 273-280.                                                                                                                       | 1.6 | 19        |
| 57 | Evaluation of effective shore level as a method of characterizing intertidal wave exposure regimes.<br>Limnology and Oceanography: Methods, 2006, 4, 448-457.                                                                                | 2.0 | 18        |
| 58 | Environmental variability and biogeography: the relationship between bathymetric distribution and<br>geographical range size in marine algae and gastropods. Global Ecology and Biogeography, 2003, 12,<br>499-506.                          | 5.8 | 17        |
| 59 | Fieldâ€based experimental acidification alters fouling community structure and reduces diversity.<br>Journal of Animal Ecology, 2016, 85, 1328-1339.                                                                                         | 2.8 | 17        |
| 60 | Symbiotic endolithic microbes alter host morphology and reduce host vulnerability to high environmental temperatures. Ecosphere, 2019, 10, e02683.                                                                                           | 2.2 | 17        |
| 61 | Reciprocal abundance shifts of the intertidal sea stars, Evasterias troschelii and Pisaster ochraceus ,<br>following sea star wasting disease. Proceedings of the Royal Society B: Biological Sciences, 2019, 286,<br>20182766.              | 2.6 | 17        |
| 62 | Quantifying the Effects of Predator and Prey Body Size on Sea Star Feeding Behaviors. Biological<br>Bulletin, 2015, 228, 192-200.                                                                                                            | 1.8 | 15        |
| 63 | Increased food supply mitigates ocean acidification effects on calcification but exacerbates effects on growth. Scientific Reports, 2018, 8, 9800.                                                                                           | 3.3 | 14        |
| 64 | Drivers of plasticity in freeze tolerance in the intertidal mussel, <i>Mytilus trossulus</i> . Journal of Experimental Biology, 2020, 223, .                                                                                                 | 1.7 | 13        |
| 65 | Linking ecomechanics and ecophysiology to interspecific interactions and community dynamics.<br>Annals of the New York Academy of Sciences, 2013, 1297, 73-82.                                                                               | 3.8 | 12        |
| 66 | 3. Species Importance and Context: Spatial and Temporal Variation in Species Interactions. , 2003, , 44-68.                                                                                                                                  |     | 12        |
| 67 | Demographic responses of coexisting species to in situ warming. Marine Ecology - Progress Series, 2016, 546, 147-161.                                                                                                                        | 1.9 | 12        |
| 68 | The introduction of Littorina littorea to British Columbia, Canada: potential impacts and the importance of biotic resistance by native predators. Marine Biology, 2013, 160, 1529-1541.                                                     | 1.5 | 11        |
| 69 | Shifts in morphological and mechanical traits compensate for performance costs of reproduction in a waveâ€swept seaweed. Journal of Ecology, 2013, 101, 963-970.                                                                             | 4.0 | 11        |
| 70 | Aerobic and behavioral flexibility allow estuarine gastropods to flourish in rapidly changing and extreme pH conditions. Marine Biology, 2017, 164, 1.                                                                                       | 1.5 | 11        |
| 71 | Caprellid amphipods ( <i>Caprella</i> spp.) are vulnerable to both physiological and habitat-mediated effects of ocean acidification. PeerJ, 2018, 6, e5327.                                                                                 | 2.0 | 11        |
| 72 | Elevated pCO2 increases sperm limitation and risk of polyspermy in the red sea urchin<br>Strongylocentrotus franciscanus. Global Change Biology, 2011, 17, 2512-2512.                                                                        | 9.5 | 9         |

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Comparing model parameterizations of the biophysical impacts of ocean acidification to identify limitations and uncertainties. Ecological Modelling, 2018, 385, 1-11.                                       | 2.5 | 9         |
| 74 | Wildcards in climate change biology. Ecological Monographs, 2021, 91, e01471.                                                                                                                               | 5.4 | 9         |
| 75 | Complex and interactive effects of ocean acidification and warming on the life span of a marine trematode parasite. International Journal for Parasitology, 2019, 49, 1015-1021.                            | 3.1 | 8         |
| 76 | Impact of temperature on an emerging parasitic association between a sperm-feeding scuticociliate and<br>Northeast Pacific sea stars. Journal of Experimental Marine Biology and Ecology, 2010, 384, 44-50. | 1.5 | 7         |
| 77 | Ecological and environmental context shape the differential effects of a facilitator in its native and invaded ranges. Ecology, 2021, 102, e03478.                                                          | 3.2 | 6         |
| 78 | Energetic context determines species and community responses to ocean acidification. Ecology, 2020, 101, e03073.                                                                                            | 3.2 | 5         |
| 79 | The distribution of the orangeâ€striped green anemone,Diadumene lineata, in relation to environmental factors along coastal British Columbia, Canada. Invertebrate Biology, 2019, 138, e12268.              | 0.9 | 4         |
| 80 | The sign and magnitude of the effects of thermal extremes on an intertidal kelp depend on environmental and biological context. Climate Change Ecology, 2021, 2, 100015.                                    | 1.9 | 3         |
| 81 | Phycology for the ecologist. Journal of Phycology, 2016, 52, 898-900.                                                                                                                                       | 2.3 | 1         |
| 82 | Shifts in Abiotic Variables and Consequences for Diversity. Ecological Studies, 2009, , 257-268.                                                                                                            | 1.2 | 1         |
| 83 | Climate Change: Coastal Marine Ecosystems. , 2014, , 969-973.                                                                                                                                               |     | 1         |
| 84 | Multiple stressors drive convergent evolution of performance properties in marine macrophytes.<br>New Phytologist, 2021, 229, 2311-2323.                                                                    | 7.3 | 0         |
| 85 | Adapting a propane turkey fryer to manipulate temperature in aquatic environments. Methods in Ecology and Evolution, 2021, 12, 1835-1840.                                                                   | 5.2 | 0         |