Hasem Habelhah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9142723/publications.pdf

Version: 2024-02-01

304743 454955 2,071 41 22 30 citations h-index g-index papers 41 41 41 3198 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Coactivation of NF-κB and Notch signaling is sufficient to induce B-cell transformation and enables B-myeloid conversion. Blood, 2020, 135, 108-120.	1.4	14
2	Deferasirox protects against hydrogen peroxide-induced cell apoptosis by inhibiting ubiquitination and degradation of p21WAF1/CIP1. Biochemical and Biophysical Research Communications, 2020, 524, 736-743.	2.1	2
3	TRAF2 Ser-11 Phosphorylation Promotes Cytosolic Translocation of the CD40 Complex To Regulate Downstream Signaling Pathways. Molecular and Cellular Biology, 2020, 40, .	2.3	7
4	Destabilizing NEK2 overcomes resistance to proteasome inhibition in multiple myeloma. Journal of Clinical Investigation, 2018, 128, 2877-2893.	8.2	61
5	Abstract 4793: TRAF2 is required for the survival of ErbB2-transfored mammary tumor cells. , 2017, , .		0
6	TRAF2 exerts opposing effects on basal and TNFî±-induced activation of the classical IKK complex in hematopoietic cells. Journal of Cell Science, 2016, 129, 1455-67.	2.0	5
7	Abstract 3496: TRAF2 protects mammary epithelial and cancer cells from endoplasmic reticulum stress-induced apoptosis. , 2016 , , .		1
8	RIP1 Cleavage in the Kinase Domain Regulates TRAIL-Induced NF-l® Activation and Lymphoma Survival. Molecular and Cellular Biology, 2015, 35, 3324-3338.	2.3	28
9	TRAIL activates JNK and NF-κB through RIP1-dependent and -independent pathways. Cellular Signalling, 2015, 27, 306-314.	3.6	33
10	Fascin regulates chronic inflammationâ€related human colon carcinogenesis by inhibiting cell anoikis. Proteomics, 2014, 14, 1031-1041.	2.2	21
11	The PP4R1 subunit of protein phosphatase PP4 targets TRAF2 and TRAF6 to mediate inhibition of NF-κB activation. Cellular Signalling, 2014, 26, 2730-2737.	3.6	20
12	Abstract 2281: Molecular mechanisms by which cFLIP overexpression regulates TRAIL-induced NF- $\hat{\mathbb{I}}^2B$ activation and lymphoma survival. , 2014, , .		0
13	Two Coordinated Mechanisms Underlie Tumor Necrosis Factor Alpha-Induced Immediate and Delayed lκB Kinase Activation. Molecular and Cellular Biology, 2013, 33, 1901-1915.	2.3	43
14	TNFR1 signaling kinetics: Spatiotemporal control of three phases of IKK activation by posttranslational modification. Cellular Signalling, 2013, 25, 1654-1664.	3. 6	24
15	ll̂ºB Kinase Îμ Phosphorylates TRAF2 To Promote Mammary Epithelial Cell Transformation. Molecular and Cellular Biology, 2012, 32, 4756-4768.	2.3	56
16	Abstract 220: TNFα activates NF-κB through RIP1 ubiquitination-dependent and independent pathways. , 2012, , .		0
17	Abstract 4852: cFLIP-regulated and caspase-8-mediated limited cleavage of RIP1 promotes NF-kB activation and inhibits cell death induced by TRAIL. , 2012, , .		1
18	TRAF2 phosphorylation promotes NF-κB–dependent gene expression and inhibits oxidative stress-induced cell death. Molecular Biology of the Cell, 2011, 22, 128-140.	2.1	36

#	Article	IF	Citations
19	Abstract 198: TRAF2 phosphorylation is essential for cancer-cell adaptation to chronic cellular stress., 2011,,.		O
20	Abstract 4696: TRAF2 plays a critical role in maintaining lymphocyte homeostasis by regulating the basal activities of IKK and caspase-8. , $2011, , .$		0
21	Emerging Complexity of Protein Ubiquitination in the NF-ÂB Pathway. Genes and Cancer, 2010, 1, 735-747.	1.9	30
22	The RING Domain of TRAF2 Plays an Essential Role in the Inhibition of TNFα-Induced Cell Death but Not in the Activation of NF-κB. Journal of Molecular Biology, 2010, 396, 528-539.	4.2	47
23	Abstract 1692: TRAF2 phosphorylation plays a critical role in cell adaptation to chronic oxidative stress. , 2010, , .		0
24	Abstract 1267: The RING domain of TRAF2 inhibits TNFα-induced cell death independent of NF-Î $^\circ$ B activation. , 2010, , .		0
25	TRAF2 Phosphorylation Modulates Tumor Necrosis Factor Alpha-Induced Gene Expression and Cell Resistance to Apoptosis. Molecular and Cellular Biology, 2009, 29, 303-314.	2.3	43
26	Phosphorylation of TRAF2 within Its RING Domain Inhibits Stress-Induced Cell Death by Promoting IKK and Suppressing JNK Activation. Cancer Research, 2009, 69, 3665-3672.	0.9	26
27	TRAF2 Suppresses Basal IKK Activity in Resting Cells and TNFα Can Activate IKK in TRAF2 and TRAF5 Double Knockout Cells. Journal of Molecular Biology, 2009, 389, 495-510.	4.2	29
28	TRAF2 Ring Domain Plays An Essential Role in Inhibition of TNFα-Induced Cell Death Independent of NF-kB Activation Blood, 2009, 114, 3621-3621.	1.4	0
29	Receptor for RACK1 Mediates Activation of JNK by Protein Kinase C. Molecular Cell, 2005, 19, 309-320.	9.7	164
30	Regulation of 2-Oxoglutarate (\hat{l} ±-Ketoglutarate) Dehydrogenase Stability by the RING Finger Ubiquitin Ligase Siah. Journal of Biological Chemistry, 2004, 279, 53782-53788.	3.4	49
31	Ubiquitination and translocation of TRAF2 is required for activation of JNK but not of p38 or NF-κB. EMBO Journal, 2004, 23, 322-332.	7.8	205
32	Siah2 Regulates Stability of Prolyl-Hydroxylases, Controls HIF1 \hat{l} \pm Abundance, and Modulates Physiological Responses to Hypoxia. Cell, 2004, 117, 941-952.	28.9	381
33	Stress-induced decrease in TRAF2 stability is mediated by Siah2. EMBO Journal, 2002, 21, 5756-5765.	7.8	109
34	Chapter 19 Oxidative stress signaling. Cell and Molecular Response To Stress, 2001, , 253-262.	0.4	0
35	Distinct pattern of p53 phosphorylation in human tumors. Oncogene, 2001, 20, 3341-3347.	5.9	92
36	ERK phosphorylation drives cytoplasmic accumulation of hnRNP-K and inhibition of mRNA translation. Nature Cell Biology, 2001, 3, 325-330.	10.3	267

#	Article	IF	CITATION
37	Identification of New JNK Substrate Using ATP Pocket Mutant JNK and a Corresponding ATP Analogue. Journal of Biological Chemistry, 2001, 276, 18090-18095.	3.4	117
38	Conversion of Human Colonic Adenoma Cells to Adenocarcinoma Cells Through Inflammation in Nude Mice. Laboratory Investigation, 2000, 80, 1617-1628.	3.7	55
39	Activated leukocyte cell adhesion molecule (ALCAM) and annexin II are involved in the metastatic progression of tumor cells after chemotherapy with Adriamycin. Clinical and Experimental Metastasis, 2000, 18, 45-50.	3.3	37
40	Increased E1AF expression in mouse fibrosarcoma promotes metastasis through induction of MT1-MMP expression. Oncogene, 1999, 18, 1771-1776.	5.9	51
41	Polysaccharide K induces Mn superoxide dismutase (Mn-SOD) in tumor tissues and inhibits malignant progression of QR-32 tumor cells: possible roles of interferon $\hat{l}\pm$, tumor necrosis factor $\hat{l}\pm$ and transforming growth factor \hat{l}^2 in Mn-SOD induction by polysaccharide K. Cancer Immunology, Immunotherapy. 1998, 46, 338-344.	4.2	17