Jose M. Fuentes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/914206/publications.pdf

Version: 2024-02-01

98 papers

15,571 citations

34 h-index 94 g-index

102 all docs 102 docs citations

102 times ranked 28132 citing authors

#	Article	IF	Citations
1	Neuroprotective properties of queen bee acid by autophagy induction. Cell Biology and Toxicology, 2023, 39, 751-770.	5.3	7
2	The parkinsonian LRRK2 R1441G mutation shows macroautophagy-mitophagy dysregulation concomitant with endoplasmic reticulum stress. Cell Biology and Toxicology, 2022, 38, 889-911.	5.3	9
3	Biological effects of olive oil phenolic compounds on mitochondria. Molecular and Cellular Oncology, 2022, 9, 2044263.	0.7	7
4	In vitro and in vivo models to study the biological and pharmacological properties of queen bee acid (QBA, 10-hydroxy-2-decenoic acid): A systematic review. Journal of Functional Foods, 2022, 94, 105143.	3.4	4
5	The dual role of necrostatin-1 in Parkinson's disease models. Neural Regeneration Research, 2021, 16, 2019.	3.0	4
6	Links Between Paraquat and Parkinson's Disease. , 2021, , 1-19.		1
7	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /Ov	erlock 10 9.1	Tf 50 502 T
8	Toxicity of Necrostatin-1 in Parkinson's Disease Models. Antioxidants, 2020, 9, 524.	5.1	13
9	Metabolic alterations in plasma from patients with familial and idiopathic Parkinson's disease. Aging, 2020, 12, 16690-16708.	3.1	32
10	Molecular characterization of autophagic and apoptotic signaling induced by sorafenib in liver cancer cells. Journal of Cellular Physiology, 2019, 234, 692-708.	4.1	45
11	Impaired Mitophagy and Protein Acetylation Levels in Fibroblasts from Parkinson's Disease Patients. Molecular Neurobiology, 2019, 56, 2466-2481.	4.0	50
12	Mitophagy in human astrocytes treated with the antiretroviral drug Efavirenz: Lack of evidence or evidence of the lack. Antiviral Research, 2019, 168, 36-50.	4.1	7
13	The paradigm of protein acetylation in Parkinson's disease. Neural Regeneration Research, 2019, 14, 975.	3.0	9
14	ER–mitochondria signaling in Parkinson's disease. Cell Death and Disease, 2018, 9, 337.	6.3	118
15	Cholesterol and multilamellar bodies: Lysosomal dysfunction in <i>GBA</i> Parkinson disease. Autophagy, 2018, 14, 717-718.	9.1	49
16	Molecular characterization of autophagic and apoptotic signaling induced by Sorafenib in liver cancer cells: In vitro and in vivo studies. Journal of Hepatology, 2018, 68, S670-S671.	3.7	2
17	Acetylome in Human Fibroblasts From Parkinson's Disease Patients. Frontiers in Cellular Neuroscience, 2018, 12, 97.	3.7	15
18	Vascular Risk Factors and Lesions of Vascular Nature in Magnetic Resonance as Predictors of Progression to Dementia in Patients with Mild Cognitive Impairment. Current Alzheimer Research, 2018, 15, 671-678.	1.4	17

#	Article	IF	CITATIONS
19	Turnover of Lipidated LC3 and Autophagic Cargoes in Mammalian Cells. Methods in Enzymology, 2017, 587, 55-70.	1.0	18
20	Fluorescent FYVE Chimeras to Quantify PtdIns3P Synthesis During Autophagy. Methods in Enzymology, 2017, 587, 257-269.	1.0	5
21	N370S <i>à€GBA1</i> mutation causes lysosomal cholesterol accumulation in Parkinson's disease. Movement Disorders, 2017, 32, 1409-1422.	3.9	86
22	Mitochondria-Associated Membranes (MAMs): Overview and Its Role in Parkinson's Disease. Molecular Neurobiology, 2017, 54, 6287-6303.	4.0	60
23	Mitochondria: Key Organelle in Parkinson's Disease. Parkinson's Disease, 2016, 2016, 1-2.	1.1	3
24	G2019S Mutation of LRRK2 Increases Autophagy via MEK/ERK Pathway., 2016,, 123-142.		2
25	mRNA and protein dataset of autophagy markers (LC3 and p62) in several cell lines. Data in Brief, 2016, 7, 641-647.	1.0	39
26	The Basics of Autophagy. , 2016, , 3-20.		6
27	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
28	PINK1 deficiency enhances autophagy and mitophagy induction. Molecular and Cellular Oncology, 2016, 3, e1046579.	0.7	18
29	Association between subclinical carotid atherosclerosis, hyperhomocysteinaemia and mild cognitive impairment. Acta Neurologica Scandinavica, 2016, 134, 154-159.	2.1	12
30	IFDOTMETER: A New Software Application for Automated Immunofluorescence Analysis. Journal of the Association for Laboratory Automation, 2016, 21, 246-259.	2.8	7
31	Pompe Disease and Autophagy: Partners in Crime, or Cause and Consequence?. Current Medicinal Chemistry, 2016, 23, 2275-2285.	2.4	6
32	Routine Western blot to check autophagic flux: Cautions and recommendations. Analytical Biochemistry, 2015, 477, 13-20.	2.4	25
33	Association of Vascular Factors and Amnestic Mild Cognitive Impairment: A Comprehensive Approach. Journal of Alzheimer's Disease, 2015, 44, 695-704.	2.6	18
34	Control of Autophagy in Parkinson's Disease. Current Topics in Neurotoxicity, 2015, , 91-122.	0.4	1
35	Is the Modulation of Autophagy the Future in the Treatment of Neurodegenerative Diseases?. Current Topics in Medicinal Chemistry, 2015, 15, 2152-2174.	2.1	11
36	G2019S LRRK2 mutant fibroblasts from Parkinson's disease patients show increased sensitivity to neurotoxin 1-methyl-4-phenylpyridinium dependent of autophagy. Toxicology, 2014, 324, 1-9.	4.2	40

#	Article	IF	Citations
37	Mitochondrial impairment increases FL-PINK1 levels by calcium-dependent gene expression. Neurobiology of Disease, 2014, 62, 426-440.	4.4	49
38	Novel insights into the neurobiology underlying LRRK2-linked Parkinson's disease. Neuropharmacology, 2014, 85, 45-56.	4.1	21
39	Links Between Paraquat and Parkinson's Disease. , 2014, , 819-842.		0
40	The LRRK2 G2019S mutant exacerbates basal autophagy through activation of the MEK/ERK pathway. Cellular and Molecular Life Sciences, 2013, 70, 121-136.	5.4	148
41	Autophagy, mitochondria and 3â€nitropropionic acid joined in the same model. British Journal of Pharmacology, 2013, 168, 60-62.	5.4	5
42	Implication of Autophagy in Parkinson's Disease. Parkinson's Disease, 2013, 2013, 1-2.	1.1	1
43	Possible involvement of the relationship of LRRK2 and autophagy in Parkinson's disease. Biochemical Society Transactions, 2012, 40, 1129-1133.	3.4	4
44	The MAPK1/3 pathway is essential for the deregulation of autophagy observed in G2019S LRRK2 mutant fibroblasts. Autophagy, 2012, 8, 1537-1539.	9.1	23
45	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
46	Parkinson's Disease: Leucine-Rich Repeat Kinase 2 and Autophagy, Intimate Enemies. Parkinson's Disease, 2012, 2012, 1-9.	1.1	6
47	Protective effect of the glial cell line-derived neurotrophic factor (GDNF) on human mesencephalic neuron-derived cells against neurotoxicity induced by paraquat. Environmental Toxicology and Pharmacology, 2011, 31, 129-136.	4.0	22
48	Fipronil is a powerful uncoupler of oxidative phosphorylation that triggers apoptosis in human neuronal cell line SHSY5Y. NeuroToxicology, 2011, 32, 935-943.	3.0	70
49	ASK1 Overexpression Accelerates Paraquat-Induced Autophagy via Endoplasmic Reticulum Stress. Toxicological Sciences, 2011, 119, 156-168.	3.1	48
50	Inhibition of autophagy by TAB2 and TAB3. EMBO Journal, 2011, 30, 4908-4920.	7.8	85
51	Activation of apoptosis signal-regulating kinase 1 is a key factor in paraquat-induced cell death: Modulation by the Nrf2/Trx axis. Free Radical Biology and Medicine, 2010, 48, 1370-1381.	2.9	120
52	Nitric oxide in paraquatâ€mediated toxicity: A review. Journal of Biochemical and Molecular Toxicology, 2010, 24, 402-409.	3.0	61
53	DJ-1 as a Modulator of Autophagy: An Hypothesis. Scientific World Journal, The, 2010, 10, 1574-1579.	2.1	4
54	Paraquat Exposure Induces Nuclear Translocation of Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) and the Activation of the Nitric Oxide-GAPDH-Siah Cell Death Cascade. Toxicological Sciences, 2010, 116, 614-622.	3.1	28

#	Article	IF	Citations
55	Curcumin exposure induces expression of the Parkinson's disease-associated leucine-rich repeat kinase 2 (LRRK2) in rat mesencephalic cells. Neuroscience Letters, 2010, 468, 120-124.	2.1	27
56	The neuroprotective effect of talipexole from paraquat-induced cell death in dopaminergic neuronal cells. NeuroToxicology, 2010, 31, 701-708.	3.0	8
57	Effect of paraquat exposure on nitric oxide-responsive genes in rat mesencephalic cells. Nitric Oxide - Biology and Chemistry, 2010, 23, 51-59.	2.7	13
58	Schistosoma mansoni arginase shares functional similarities with human orthologs but depends upon disulphide bridges for enzymatic activity. International Journal for Parasitology, 2009, 39, 267-279.	3.1	16
59	Nitric Oxide-Mediated Toxicity in Paraquat-Exposed SH-SY5Y Cells: A Protective Role of 7-Nitroindazole. Neurotoxicity Research, 2009, 16, 160-173.	2.7	30
60	Silencing DJâ€1 reveals its contribution in paraquatâ€induced autophagy. Journal of Neurochemistry, 2009, 109, 889-898.	3.9	71
61	Curcumin enhances paraquat-induced apoptosis of N27 mesencephalic cells via the generation of reactive oxygen species. NeuroToxicology, 2009, 30, 1008-1018.	3.0	30
62	Identification of Genes Associated with Paraquat-Induced Toxicity in SH-SY5Y Cells by PCR Array Focused on Apoptotic Pathways. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2008, 71, 1457-1467.	2.3	27
63	Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 2008, 4, 151-175.	9.1	2,064
64	Age-Related Alteration of Arginase Activity Impacts on Severity of Leishmaniasis. PLoS Neglected Tropical Diseases, 2008, 2, e235.	3.0	35
65	Relationship between Autophagy and Apoptotic Cell Death in Human Neuroblastoma Cells Treated with Paraquat: Could Autophagy be a "Brake―in Paraquat-Induced Apoptotic Death?. Autophagy, 2007, 3, 366-367.	9.1	36
66	Inhibition of Paraquat-Induced Autophagy Accelerates the Apoptotic Cell Death in Neuroblastoma SH-SY5Y Cells. Toxicological Sciences, 2007, 97, 448-458.	3.1	124
67	Arginase activity mediates reversible T cell hyporesponsiveness in human pregnancy. European Journal of Immunology, 2007, 37, 935-945.	2.9	150
68	Expression in yeast and purification of a membrane protein, SERCA1a, using a biotinylated acceptor domain. Protein Expression and Purification, 2006, 48, 32-42.	1.3	33
69	Suppression of T-cell functions by human granulocyte arginase. Blood, 2006, 108, 1627-1634.	1.4	341
70	Th1/Th2 Cytokines: An Easy Model to Study Gene Expression in Immune Cells. CBE Life Sciences Education, 2006, 5, 287-295.	2.3	2
71	Low Concentrations of Paraquat Induces Early Activation of Extracellular Signal-Regulated Kinase 1/2, Protein Kinase B, and c-Jun N-terminal Kinase 1/2 Pathways: Role of c-Jun N-Terminal Kinase in Paraquat-Induced Cell Death. Toxicological Sciences, 2006, 92, 507-515.	3.1	36
72	Arginase I is constitutively expressed in human granulocytes and participates in fungicidal activity. Blood, 2005, 105, 2549-2556.	1.4	283

#	Article	IF	Citations
73	Arginase and polyamine synthesis are key factors in the regulation of experimental leishmaniasis in vivo. FASEB Journal, 2005, 19, 1000-1002.	0.5	248
74	Heat shock proteins protect both MPP+ and paraquat neurotoxicity. Brain Research Bulletin, 2005, 67, 509-514.	3.0	16
75	Paraquat-induced apoptotic cell death in cerebellar granule cells. Brain Research, 2004, 1011, 170-176.	2.2	95
76	MPP ⁺ : Mechanism for Its Toxicity in Cerebellar Granule Cells. Molecular Neurobiology, 2004, 30, 253-264.	4.0	27
77	Protection against MPP+ neurotoxicity in cerebellar granule cells by antioxidants. Cell Biology International, 2004, 28, 373-380.	3.0	51
78	Paraquat-induced apoptotic cell death in cerebellar granule cells. Brain Research, 2004, 1011, 170-176.	2.2	1
79	Vitamin E blocks early events induced by 1-methyl-4-phenylpyridinium (MPP+) in cerebellar granule cells. Journal of Neurochemistry, 2003, 84, 305-315.	3.9	44
80	Involvement of the Cytoplasmic Loop L6â€7 in the Entry Mechanism for Transport of Ca ²⁺ through the Sarcoplasmic Reticulum Ca ²⁺ â€ATPase. Annals of the New York Academy of Sciences, 2003, 986, 90-95.	3.8	1
81	MPP+ Causes Inhibition of Cellular Energy Supply in Cerebellar Granule Cells. NeuroToxicology, 2003, 24, 219-225.	3.0	20
82	Diagnostic performance of arginase activity in colorectal cancer. Clinical and Experimental Medicine, 2002, 2, 53-57.	3.6	29
83	Mechanisms of MPP + incorporation into cerebellar granule cells. Brain Research Bulletin, 2001, 56, 119-123.	3.0	25
84	Differential Regulation of Nitric Oxide Synthase-2 and Arginase-1 by Type 1/Type 2 Cytokines In Vivo: Granulomatous Pathology Is Shaped by the Pattern of <scp>I < /scp>-Arginine Metabolism. Journal of Immunology, 2001, 167, 6533-6544.</scp>	0.8	618
85	Lithium inhibits caspase 3 activation and dephosphorylation of PKB and GSK3 induced by K+ deprivation in cerebellar granule cells. Journal of Neurochemistry, 2001, 78, 199-206.	3.9	87
86	Clean Western Blots of Membrane Proteins after Yeast Heterologous Expression Following a Shortened Version of the Method of Perini et al Analytical Biochemistry, 2000, 285, 276-278.	2.4	37
87	Implications of the S-shaped domain in the quaternary structure of human arginase. BBA - Proteins and Proteomics, 2000, 1476, 181-190.	2.1	18
88	Different mechanisms of protection against apoptosis by valproate and Li+. FEBS Journal, 1999, 266, 886-891.	0.2	90
89	Partial lithium-associated protection against apoptosis induced by C2-ceramide in cerebellar granule neurons. NeuroReport, 1998, 9, 4199-4203.	1.2	57
90	Immunological Identity of the Two Different Molecular Mass Constltutive Subunits of Liver Arginase. Biological Chemistry Hoppe-Seyler, 1994, 375, 537-542.	1.4	12

#	Article	IF	CITATIONS
91	Oscillations in rat liver cytosolic enzyme activities of the urea cycle. Archives Internationales De Physiologie, De Biochimie Et De Biophysique, 1994, 102, 237-241.	0.1	11
92	Kinetics of manganese reconstitution and thiol group exposition in dialyzed rat mammary gland arginase. International Journal of Biochemistry & Cell Biology, 1994, 26, 653-659.	0.5	13
93	Kinetics and inhibition by some aminoacids of lactating rat mammary gland arginase. Archives Internationales De Physiologie, De Biochimie Et De Biophysique, 1994, 102, 255-258.	0.1	12
94	Parallel Induction of Nitric Oxide and Glucose-6-Phosphate Dehydrogenase in Activated Bone Marrow Derived Macrophages. Biochemical and Biophysical Research Communications, 1993, 196, 342-347.	2.1	27
95	An arginine regulated î³-guanidobutyrate ureahydrolase from tench liver (<i>Tinca tinca</i> L.). Archives Internationales De Physiologie, De Biochimie Et De Biophysique, 1992, 100, 55-60.	0.1	3
96	Unfolding and trypsin inactivation studies reveal a conformation drift of glucose-6-phosphate dehydrogenase upon binding of NADP. BBA - Proteins and Proteomics, 1992, 1122, 99-106.	2.1	2
97	Autophagy: A Possible Defense Mechanism in Parkinson's Disease?. , 0, , .		О
98	Paraquat, Between Apoptosis and Autophagy. , 0, , .		0