Shin-Hyun Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9141994/publications.pdf

Version: 2024-02-01

222 papers 12,599 citations

62 h-index 36203 101 g-index

245 all docs

245 docs citations

times ranked

245

12892 citing authors

#	Article	IF	CITATIONS
1	Thermochromic Microcapsules Containing Chiral Mesogens Enclosed by Hydrogel Shell for Colorimetric Temperature Reporters. Advanced Functional Materials, 2022, 32, 2107275.	7.8	17
2	Coâ€Assembly of Colloids and Eumelanin Nanoparticles in Droplets for Structural Pigments with High Saturation. Small, 2022, 18, e2106048.	5.2	20
3	Hydrogel-Assisted 3D Volumetric Hotspot for Sensitive Detection by Surface-Enhanced Raman Spectroscopy. International Journal of Molecular Sciences, 2022, 23, 1004.	1.8	8
4	Designing Multicolor Graphics of Plasmonic Metasurfaces through Gradual Protrusion of Particles at Free Interface. Advanced Materials Interfaces, 2022, 9, .	1.9	4
5	Early and direct detection of bacterial signaling molecules through one-pot Au electrodeposition onto paper-based 3D SERS substrates. Sensors and Actuators B: Chemical, 2022, 358, 131504.	4.0	18
6	Tomographic measurement of dielectric tensors at optical frequency. Nature Materials, 2022, 21, 317-324.	13.3	29
7	Crystallization and Melting of Thermoresponsive Colloids Confined in Microcapsules. Chemistry of Materials, 2022, 34, 3509-3517.	3.2	8
8	Hydrogelâ€shelled biodegradable microspheres for sustained release of encapsulants. Journal of Polymer Science, 2022, 60, 1700-1709.	2.0	8
9	Photonic Microbeads Templated by Oilâ€inâ€Oil Emulsion Droplets for High Saturation of Structural Colors. Small, 2022, 18, e2105225.	5.2	20
10	Osmosis-Mediated Microfluidic Production of Submillimeter-Sized Capsules with an Ultrathin Shell for Cosmetic Applications. ACS Applied Materials & Interfaces, 2022, 14, 18159-18169.	4.0	7
11	Recent advances in the microfluidic production of functional microcapsules by multiple-emulsion templating. Lab on A Chip, 2022, 22, 2259-2291.	3.1	26
12	Dualâ€Colored Janus Microspheres with Photonic and Plasmonic Faces. Small, 2022, 18, e2201437.	5.2	15
13	Microfluidics: Advanced platform for designing polymeric microparticles, microcapsules, and microfibers. Journal of Polymer Science, 2022, 60, 1651-1652.	2.0	1
14	Soft and Tough Microcapsules with Doubleâ€Network Hydrogel Shells. Advanced Functional Materials, 2022, 32, .	7.8	8
15	Smallâ€Volume Plasmonic Microwell Array with 3D Hierarchical Nanomaterials for Plasmonâ€Enhanced Fluorescence Immunoassay. Advanced NanoBiomed Research, 2021, 1, 2000015.	1.7	5
16	Improving mechanical and physical properties of ultra-thick carbon nanotube fiber by fast swelling and stretching process. Carbon, 2021, 172, 733-741.	5.4	16
17	Microfluidic Production of Mechanochromic Photonic Fibers Containing Noncloseâ€Packed Colloidal Arrays. Small Science, 2021, 1, 2000058.	5.8	14
18	Photothermal Fabrics for Efficient Oil-Spill Remediation via Solar-Driven Evaporation Combined with Adsorption. ACS Applied Materials & Samp; Interfaces, 2021, 13, 13106-13113.	4.0	23

#	Article	IF	CITATIONS
19	Thermoâ€Responsive Microcapsules with Tunable Molecular Permeability for Controlled Encapsulation and Release. Advanced Functional Materials, 2021, 31, 2100782.	7.8	37
20	Robust Biocatalysts Displayed on Crystalline Proteinâ€Layered Cells for Efficient and Sustainable Hydration of Carbon Dioxide. Advanced Functional Materials, 2021, 31, 2102497.	7.8	6
21	Elastic Photonic Microcapsules Containing Colloidal Crystallites as Building Blocks for Macroscopic Photonic Surfaces. ACS Nano, 2021, 15, 12438-12448.	7.3	24
22	Metallic Nanodimple Arrays for Wide-Angle Coloration via Plasmonic and Structural Resonances. Chemistry of Materials, 2021, 33, 4628-4637.	3.2	7
23	Designing Semipermeable Hydrogel Shells with Controlled Thickness through Internal Osmosis in Tripleâ€Emulsion Droplets. Advanced Functional Materials, 2021, 31, 2105477.	7.8	10
24	Photoswitchable Surfactant-Driven Reversible Shape- and Color-Changing Block Copolymer Particles. Journal of the American Chemical Society, 2021, 143, 13333-13341.	6.6	55
25	Swelling and Deswelling Kinetics of Thermoâ€Responsive Microcapsules with Ultrathin Membrane. Advanced Materials Interfaces, 2021, 8, 2100538.	1.9	4
26	In Situ Electrodeposition of Gold Nanostructures in 3D Ultraâ€Thin Hydrogel Skins for Direct Molecular Detection in Complex Mixtures with High Sensitivity. Laser and Photonics Reviews, 2021, 15, 2100316.	4.4	9
27	Direct writing of customized structural-color graphics with colloidal photonic inks. Science Advances, 2021, 7, eabj8780.	4.7	57
28	Hydrocipher: Bioinspired Dynamic Structural Colorâ€Based Cryptographic Surface. Advanced Optical Materials, 2020, 8, 1901259.	3.6	49
29	Composite Microgels Created by Complexation between Polyvinyl Alcohol and Graphene Oxide in Compressed Doubleâ€Emulsion Drops. Small, 2020, 16, e1903812.	5.2	24
30	Elastic Photonic Microbeads as Building Blocks for Mechanochromic Materials. ACS Applied Polymer Materials, 2020, 2, 706-714.	2.0	38
31	Plasmonic Microgels for Raman-Based Molecular Detection Created by Simultaneous Photoreduction and Photocross-linking. ACS Applied Materials & Interfaces, 2020, 12, 48188-48197.	4.0	14
32	Fluorescent Polymer-MoS ₂ -Embedded Microgels for Photothermal Heating and Colorimetric Monitoring. ACS Applied Materials & Samp; Interfaces, 2020, 12, 35415-35423.	4.0	13
33	Controlled Assembly of Icosahedral Colloidal Clusters for Structural Coloration. Chemistry of Materials, 2020, 32, 9704-9712.	3.2	23
34	Photonic Janus Balls with Controlled Magnetic Moment and Density Asymmetry. ACS Nano, 2020, 14, 15714-15722.	7.3	48
35	Photonic Multishells: Photonic Multishells Composed of Cholesteric Liquid Crystals Designed by Controlled Phase Separation in Emulsion Drops (Adv. Mater. 30/2020). Advanced Materials, 2020, 32, 2070227.	11.1	2
36	Colloidal assembly in droplets: structures and optical properties. Nanoscale, 2020, 12, 18576-18594.	2.8	29

3

#	Article	IF	CITATIONS
37	Quasi-3D Plasmonic Nanowell Array for Molecular Enrichment and SERS-Based Detection. Nanomaterials, 2020, 10, 939.	1.9	3
38	Plasmonic Janus Microspheres Created from Pickering Emulsion Drops. Advanced Materials, 2020, 32, e2001384.	11.1	22
39	Encapsulation of 3D plasmonic nanostructures with ultrathin hydrogel skin for rapid and direct detection of toxic small molecules in complex fluids. Nanoscale, 2020, 12, 12942-12949.	2.8	13
40	Photonic Multishells Composed of Cholesteric Liquid Crystals Designed by Controlled Phase Separation in Emulsion Drops. Advanced Materials, 2020, 32, e2002166.	11.1	39
41	Colloidal Crystallization: Realâ€Time Monitoring of Colloidal Crystallization in Electrostaticallyâ€Levitated Drops (Small 11/2020). Small, 2020, 16, 2070060.	5.2	0
42	Macroporous Hydrogels for Fast and Reversible Switching between Transparent and Structurally Colored States. Advanced Functional Materials, 2020, 30, 2001318.	7.8	62
43	Realâ€Time Monitoring of Colloidal Crystallization in Electrostaticallyâ€Levitated Drops. Small, 2020, 16, 1907478.	5.2	12
44	Microfluidic Fabrication of Capsule Sensor Platform with Doubleâ€6hell Structure. Advanced Functional Materials, 2019, 29, 1902670.	7.8	23
45	Interfacial Assembly of Amphiphilic Tiles for Reconfigurable Photonic Surfaces. ACS Applied Materials & Lamp; Interfaces, 2019, 11, 45237-45245.	4.0	16
46	Active Patchy Colloids with Shape-Tunable Dynamics. Journal of the American Chemical Society, 2019, 141, 14853-14863.	6.6	57
47	Colloidal Photonic Inks for Mechanochromic Films and Patterns with Structural Colors of High Saturation. Chemistry of Materials, 2019, 31, 8154-8162.	3.2	103
48	Single-step assembly of asymmetric vesicles. Lab on A Chip, 2019, 19, 749-756.	3.1	30
49	Depletion-Mediated Interfacial Assembly of Semiconductor Nanorods. Nano Letters, 2019, 19, 963-970.	4.5	28
50	Colorimetric Recording of Thermal Conditions on Polymeric Inverse Opals. Advanced Materials, 2019, 31, e1901398.	11,1	38
51	Smart Microcapsules with Molecular Polarity―and Temperatureâ€Dependent Permeability. Small, 2019, 15, e1900434.	5.2	24
52	Janus Microcarriers for Magnetic Field ontrolled Combination Chemotherapy of Hepatocellular Carcinoma. Advanced Functional Materials, 2019, 29, 1901384.	7.8	22
53	Photonic Microcapsules Containing Singleâ€Crystal Colloidal Arrays with Optical Anisotropy. Advanced Materials, 2019, 31, e1900693.	11.1	54
54	Designing Structural-Color Patterns Composed of Colloidal Arrays. ACS Applied Materials & Designing Structural-Color Patterns Composed of Colloidal Arrays. ACS Applied Materials & Designing Structural Structur	4.0	98

#	Article	IF	Citations
55	3D nanoporous plasmonic chips for extremely sensitive NO ₂ detection. Analyst, The, 2019, 144, 7162-7167.	1.7	7
56	Microfluidic Designing Microgels Containing Highly Concentrated Gold Nanoparticles for SERS Analysis of Complex Fluids. Small, 2019, 15, e1905076.	5. 2	32
57	Structural Coloration with Noncloseâ€Packed Array of Bidisperse Colloidal Particles. Small, 2019, 15, e1804548.	5.2	26
58	Microcapsules Containing pH-Responsive, Fluorescent Polymer-Integrated MoS ₂ : An Effective Platform for in Situ pH Sensing and Photothermal Heating. ACS Applied Materials & Long Interfaces, 2018, 10, 9023-9031.	4.0	50
59	Microfluidic Production of Capsulesâ€inâ€Capsules for Programed Release of Multiple Ingredients. Advanced Materials Technologies, 2018, 3, 1800006.	3.0	27
60	Designing Multicolor Micropatterns of Inverse Opals with Photonic Bandgap and Surface Plasmon Resonance. Advanced Functional Materials, 2018, 28, 1706664.	7.8	34
61	Biodegradable Inverse Opals with Controlled Discoloration. Advanced Materials Interfaces, 2018, 5, 1701658.	1.9	13
62	High-performance solution-processable flexible and transparent conducting electrodes with embedded Cu mesh. Journal of Materials Chemistry C, 2018, 6, 4389-4395.	2.7	22
63	Inertial-ordering-assisted droplet microfluidics for high-throughput single-cell RNA-sequencing. Lab on A Chip, 2018, 18, 775-784.	3.1	85
64	Doubleâ€Emulsionâ€Templated Anisotropic Microcapsules for pHâ€Triggered Release. Advanced Materials Interfaces, 2018, 5, 1701472.	1.9	25
65	Photoâ€Reconfigurable Azopolymer Etch Mask: Photofluidizationâ€Driven Reconfiguration and Edge Rectangularization. Small, 2018, 14, e1703250.	5.2	10
66	Semipermeable Microcapsules with a Block-Polymer-Templated Nanoporous Membrane. Chemistry of Materials, 2018, 30, 273-279.	3.2	30
67	Lithographically Designed Conical Microcarriers for Programed Release of Multiple Actives. Advanced Materials Interfaces, 2018, 5, 1701163.	1.9	5
68	Controlled Encapsulation of Cholesteric Liquid Crystals Using Emulsion Templates. Macromolecular Research, 2018, 26, 1054-1065.	1.0	23
69	Microgels: SERS-Active-Charged Microgels for Size- and Charge-Selective Molecular Analysis of Complex Biological Samples (Small 40/2018). Small, 2018, 14, 1870183.	5.2	0
70	2-Dimensional colloidal micropatterning of cholesteric liquid crystal microcapsules for temperature-responsive color displays. Journal of Industrial and Engineering Chemistry, 2018, 68, 393-398.	2.9	15
71	Osmotic-Stress-Mediated Control of Membrane Permeability of Polymeric Microcapsules. Chemistry of Materials, 2018, 30, 7211-7220.	3.2	8
72	Uniform Coating of Self-Assembled Noniridescent Colloidal Nanostructures using the Marangoni Effect and Polymers. Physical Review Applied, 2018, 10, .	1.5	13

#	Article	IF	Citations
73	Photonic Capsule Sensors with Builtâ€In Colloidal Crystallites. Advanced Materials, 2018, 30, e1803387.	11.1	82
74	Compressible colloidal clusters from Pickering emulsions and their DNA functionalization. Chemical Communications, 2018, 54, 8328-8331.	2.2	10
75	Wavelength-tunable and shape-reconfigurable photonic capsule resonators containing cholesteric liquid crystals. Science Advances, 2018, 4, eaat8276.	4.7	77
76	Hydrate Growth Inhibition by Poly(vinyl caprolactam) Released from Microcarriers under Turbulent Mixing Conditions. Energy & Samp; Fuels, 2018, 32, 9001-9009.	2.5	2
77	An Antibody-Immobilized Silica Inverse Opal Nanostructure for Label-Free Optical Biosensors. Sensors, 2018, 18, 307.	2.1	48
78	Multicompartment Photonic Microcylinders toward Structural Color Inks. Chemistry of Materials, 2018, 30, 3789-3797.	3.2	25
79	SERSâ€Activeâ€Charged Microgels for Size―and Chargeâ€Selective Molecular Analysis of Complex Biological Samples. Small, 2018, 14, e1802520.	5.2	40
80	Reaction-Diffusion-Mediated Photolithography for Designing Pseudo-3D Microstructures. Small, 2017, 13, 1603516.	5.2	12
81	Magnetoresponsive Photonic Microspheres with Structural Color Gradient. Advanced Materials, 2017, 29, 1605450.	11.1	47
82	Amplified Photon Upconversion by Photonic Shell of Cholesteric Liquid Crystals. Journal of the American Chemical Society, 2017, 139, 5708-5711.	6.6	47
83	Uniform Microgels Containing Agglomerates of Silver Nanocubes for Molecular Sizeâ€6electivity and High SERS Activity. Small, 2017, 13, 1604048.	5.2	25
84	Thermoresponsive Microcarriers for Smart Release of Hydrate Inhibitors under Shear Flow. ACS Applied Materials & Diterfaces, 2017, 9, 17178-17185.	4.0	12
85	Microfluidic Production of Biodegradable Microcapsules for Sustained Release of Hydrophilic Actives. Small, 2017, 13, 1700646.	5.2	57
86	Liquid Crystals: Structural Color Palettes of Core–Shell Photonic Ink Capsules Containing Cholesteric Liquid Crystals (Adv. Mater. 23/2017). Advanced Materials, 2017, 29, .	11.1	6
87	Structural Color Palettes of Core–Shell Photonic Ink Capsules Containing Cholesteric Liquid Crystals. Advanced Materials, 2017, 29, 1606894.	11.1	95
88	Selective Coloration of Melanin Nanospheres through Resonant Mie Scattering. Advanced Materials, 2017, 29, 1700256.	11.1	54
89	3D multilayered plasmonic nanostructures with high areal density for SERS. RSC Advances, 2017, 7, 17898-17905.	1.7	22
90	Ultrathin Double‧hell Capsules for High Performance Photon Upconversion. Advanced Materials, 2017, 29, 1606830.	11.1	22

#	Article	IF	CITATIONS
91	Droplet-Guiding Superhydrophobic Arrays of Plasmonic Microposts for Molecular Concentration and Detection. ACS Applied Materials & Samp; Interfaces, 2017, 9, 37201-37209.	4.0	30
92	Flexible and Robust Superomniphobic Surfaces Created by Localized Photofluidization of Azopolymer Pillars. ACS Nano, 2017, 11, 7821-7828.	7.3	115
93	Emulsion templated vesicles with symmetric or asymmetric membranes. Advances in Colloid and Interface Science, 2017, 247, 413-425.	7.0	13
94	Chameleon-Inspired Mechanochromic Photonic Films Composed of Non-Close-Packed Colloidal Arrays. ACS Nano, 2017, 11, 11350-11357.	7.3	274
95	Creation of Faceted Polyhedral Microgels from Compressed Emulsions. Small, 2017, 13, 1701256.	5 . 2	23
96	Robust photonic microparticles comprising cholesteric liquid crystals for anti-forgery materials. Journal of Materials Chemistry C, 2017, 5, 7567-7573.	2.7	37
97	Bicolored Janus Microparticles Created by Phase Separation in Emulsion Drops. Macromolecular Chemistry and Physics, 2017, 218, 1600265.	1.1	18
98	Photonic-crystal hydrogels with a rapidly tunable stop band and high reflectivity across the visible. Optical Materials Express, 2017, 7, 253.	1.6	31
99	Controlled Insertion of Planar Defect in Inverse Opals for Anticounterfeiting Applications. ACS Applied Materials & Defect in Inverse Opals for Anticounterfeiting Applications. ACS	4.0	18
100	Lithographic Design of Overhanging Microdisk Arrays Toward Omniphobic Surfaces. Advanced Materials, 2016, 28, 291-298.	11.1	55
101	Lithographically Encrypted Inverse Opals for Anti-Counterfeiting Applications. Small, 2016, 12, 3819-3826.	5. 2	93
102	Designing Multicolored Photonic Micropatterns through the Regioselective Thermal Compression of Inverse Opals. Advanced Functional Materials, 2016, 26, 4587-4594.	7.8	69
103	Alginate microgels created by selective coalescence between core drops paired with an ultrathin shell. Journal of Materials Chemistry B, 2016, 4, 3232-3238.	2.9	28
104	Polymeric Inverse Glasses for Development of Noniridescent Structural Colors in Full Visible Range. ACS Applied Materials & Samp; Interfaces, 2016, 8, 12473-12480.	4.0	28
105	Nanostructured plasmonic substrates for use as SERS sensors. Nano Convergence, 2016, 3, 18.	6.3	99
106	Large-Area Accurate Position Registry of Microparticles on Flexible, Stretchable Substrates Using Elastomer Templates. ACS Applied Materials & Samp; Interfaces, 2016, 8, 28149-28158.	4.0	25
107	Stackedâ€Disk Nanotower Arrays for Use as Omniphobic Surfaceâ€Enhanced Raman Scattering Substrates. Advanced Optical Materials, 2016, 4, 1893-1900.	3.6	16
108	Hydrate formation in water-laden microcapsules for temperature-sensitive release of encapsulants. RSC Advances, 2016, 6, 85012-85018.	1.7	2

#	Article	IF	Citations
109	Controlling Smectic Liquid Crystal Defect Patterns by Physical Stamping-Assisted Domain Separation and Their Use as Templates for Quantum Dot Cluster Arrays. Langmuir, 2016, 32, 13418-13426.	1.6	13
110	Microfluidic production of multiple emulsions and functional microcapsules. Lab on A Chip, 2016, 16, 3415-3440.	3.1	187
111	Metal Nanoparticle-Loaded Microgels with Selective Permeability for Direct Detection of Small Molecules in Biological Fluids. Chemistry of Materials, 2016, 28, 1559-1565.	3.2	34
112	Microfluidic Production of Uniform Microcarriers with Multicompartments through Phase Separation in Emulsion Drops. Chemistry of Materials, 2016, 28, 1430-1438.	3.2	74
113	Hierarchical nanostructures created by interference of high-order diffraction beams. Journal of Materials Chemistry C, 2016, 4, 1088-1095.	2.7	9
114	Colloidal Photonic Crystals for Sensor Applications. Springer Series in Materials Science, 2016, , 51-78.	0.4	5
115	Photonic Crystals: Liquid-Impermeable Inverse Opals with Invariant Photonic Bandgap (Adv. Mater.) Tj ETQq1 1 (0.784314 11.1	rgBT /Overloc
116	Monodisperse Emulsion Drop Microenvironments for Bacterial Biofilm Growth. Small, 2015, 11, 3954-3961.	5.2	71
117	Standingâ€Waveâ€Assisted Creation of Nanopillar Arrays with Vertically Integrated Nanogaps for SERSâ€Active Substrates. Advanced Functional Materials, 2015, 25, 4681-4688.	7.8	49
118	Microfluidic Design of Magnetoresponsive Photonic Microcylinders with Multicompartments. Small, 2015, 11, 4938-4945.	5.2	22
119	Reconfigurable Photonic Capsules Containing Cholesteric Liquid Crystals with Planar Alignment. Angewandte Chemie - International Edition, 2015, 54, 15266-15270.	7.2	73
120	Osmotic-Pressure-Mediated Control of Structural Colors of Photonic Capsules. Chemistry of Materials, 2015, 27, 1014-1020.	3.2	59
121	Anisotropic Microparticles Created by Phase Separation of Polymer Blends Confined in Monodisperse Emulsion Drops. Langmuir, 2015, 31, 937-943.	1.6	61
122	Liquid Crystals: Robust Microfluidic Encapsulation of Cholesteric Liquid Crystals Toward Photonic Ink Capsules (Adv. Mater. 4/2015). Advanced Materials, 2015, 27, 771-771.	11.1	2
123	Microfluidic Production of Semipermeable Microcapsules by Polymerization-Induced Phase Separation. Langmuir, 2015, 31, 6027-6034.	1.6	56
124	Hydroxide ion-mediated synthesis of monodisperse dopamine–melanin nanospheres. Journal of Colloid and Interface Science, 2015, 458, 87-93.	5.0	48
125	Microfluidic generation of PEG-b-PLA polymersomes containing alginate-based core hydrogel. Biomicrofluidics, 2015, 9, 024101.	1.2	31
126	Dynamic designing of microstructures by chemical gradient-mediated growth. Nature Communications, 2015, 6, 6584.	5.8	31

#	Article	IF	Citations
127	Combination of a Sample Pretreatment Microfluidic Device with a Photoluminescent Graphene Oxide Quantum Dot Sensor for Trace Lead Detection. Analytical Chemistry, 2015, 87, 10969-10975.	3.2	70
128	Liquidâ€Impermeable Inverse Opals with Invariant Photonic Bandgap. Advanced Materials, 2015, 27, 1282-1287.	11.1	68
129	Self-Organization of Nanorods into Ultra-Long Range Two-Dimensional Monolayer End-to-End Network. Nano Letters, 2015, 15, 714-720.	4.5	32
130	Robust Microfluidic Encapsulation of Cholesteric Liquid Crystals Toward Photonic Ink Capsules. Advanced Materials, 2015, 27, 627-633.	11.1	111
131	Ultrathin Shell Double Emulsion Templated Giant Unilamellar Lipid Vesicles with Controlled Microdomain Formation. Small, 2014, 10, 950-956.	5.2	150
132	Perforated Microcapsules with Selective Permeability Created by Confined Phase Separation of Polymer Blends. Chemistry of Materials, 2014, 26, 7166-7171.	3.2	36
133	Osmocapsules for Direct Measurement of Osmotic Strength. Small, 2014, 10, 1155-1162.	5.2	27
134	25th Anniversary Article: Double Emulsion Templated Solid Microcapsules: Mechanics And Controlled Release. Advanced Materials, 2014, 26, 2205-2218.	11.1	226
135	Controlled formation of double-emulsion drops in sudden expansion channels. Journal of Colloid and Interface Science, 2014, 415, 26-31.	5.0	28
136	Microfluidic Fabrication of Giant Unilamellar Lipid Vesicles with Controlled Microdomain Formation. Biophysical Journal, 2014, 106, 42a.	0.2	3
137	Fullâ€Spectrum Photonic Pigments with Nonâ€iridescent Structural Colors through Colloidal Assembly. Angewandte Chemie - International Edition, 2014, 53, 2899-2903.	7.2	206
138	Microcapsules: Osmocapsules for Direct Measurement of Osmotic Strength (Small 6/2014). Small, 2014, 10, 1232-1232.	5.2	1
139	Controlled Pixelation of Inverse Opaline Structures Towards Reflectionâ€Mode Displays. Advanced Materials, 2014, 26, 2391-2397.	11.1	141
140	Droplet Microfluidics for Producing Functional Microparticles. Langmuir, 2014, 30, 1473-1488.	1.6	199
141	Osmotic-pressure-controlled concentration of colloidal particles in thin-shelled capsules. Nature Communications, 2014, 5, 3068.	5.8	152
142	Photonic Crystals: Magnetoresponsive Discoidal Photonic Crystals Toward Active Color Pigments (Adv. Mater. 33/2014). Advanced Materials, 2014, 26, 5734-5734.	11.1	1
143	Bio-inspired nanotadpoles with component-specific functionality. Journal of Materials Chemistry B, 2014, 2, 6462-6466.	2.9	3
144	Ordered Packing of Emulsion Droplets toward the Preparation of Adjustable Photomasks. Langmuir, 2014, 30, 5404-5411.	1.6	7

#	Article	IF	CITATIONS
145	Monolithic Photonic Crystals Created by Partial Coalescence of Core–Shell Particles. Langmuir, 2014, 30, 2369-2375.	1.6	4
146	Magnetoresponsive Discoidal Photonic Crystals Toward Active Color Pigments. Advanced Materials, 2014, 26, 5801-5807.	11.1	56
147	Nonspherical Double Emulsions with Multiple Distinct Cores Enveloped by Ultrathin Shells. ACS Applied Materials & Distinct Cores Enveloped by Ultrathin Shells. ACS Applied Materials & Distinct Cores Enveloped by Ultrathin Shells. ACS Applied Materials & Distinct Cores Enveloped by Ultrathin Shells. ACS	4.0	42
148	Colloidal Assembly in Leidenfrost Drops for Noniridescent Structural Color Pigments. Langmuir, 2014, 30, 8350-8356.	1.6	28
149	Photothermal Control of Membrane Permeability of Microcapsules for On-Demand Release. ACS Applied Materials & Description (1988) Applie	4.0	43
150	Microfluidic Molding of Photonic Microparticles with Engraved Elastomeric Membranes. Small, 2014, 10, 3979-3985.	5.2	14
151	Microfluidic Fabrication of Vesicles. Advances in Transport Phenomena, 2014, , 1-28.	0.5	3
152	Microfluidic Fabrication of Stable Gas-Filled Microcapsules for Acoustic Contrast Enhancement. Langmuir, 2013, 29, 12352-12357.	1.6	37
153	Enhanced-throughput production of polymersomes using a parallelized capillary microfluidic device. Microfluidics and Nanofluidics, 2013, 14, 509-514.	1.0	66
154	Microfluidic fabrication of photo-responsive hydrogel capsules. Chemical Communications, 2013, 49, 1865.	2.2	42
155	Elaborate Design Strategies Toward Novel Microcarriers for Controlled Encapsulation and Release. Particle and Particle Systems Characterization, 2013, 30, 9-45.	1.2	67
156	Formation of polymersomes with double bilayers templated by quadruple emulsions. Lab on A Chip, 2013, 13, 1351.	3.1	47
157	Polymer Microcapsules with Programmable Active Release. Journal of the American Chemical Society, 2013, 135, 7744-7750.	6.6	149
158	Surface Functionalized Hydrophobic Porous Particles Toward Water Treatment Application. Advanced Materials, 2013, 25, 3215-3221.	11.1	45
159	Colloidal Photonic Crystals toward Structural Color Palettes for Security Materials. Chemistry of Materials, 2013, 25, 2684-2690.	3.2	315
160	Freestanding and Arrayed Nanoporous Microcylinders for Highly Active 3D SERS Substrate. Chemistry of Materials, 2013, 25, 2421-2426.	3.2	64
161	Polymersomes Containing a Hydrogel Network for High Stability and Controlled Release. Small, 2013, 9, 124-131.	5.2	68
162	Photo―and Thermoresponsive Polymersomes for Triggered Release. Angewandte Chemie - International Edition, 2012, 51, 12499-12503.	7.2	155

#	Article	IF	CITATIONS
163	Single step emulsification for the generation of multi-component double emulsions. Soft Matter, 2012, 8, 10719.	1.2	152
164	Delayed Buckling and Guided Folding of Inhomogeneous Capsules. Physical Review Letters, 2012, 109, 134302.	2.9	130
165	Synthesis of snowman-shaped microparticles by monomer swelling and polymerization of crosslinked seed particles. Korean Journal of Chemical Engineering, 2012, 29, 1102-1107.	1.2	6
166	Monodisperse Gas-Filled Microparticles from Reactions in Double Emulsions. Langmuir, 2012, 28, 6742-6745.	1.6	37
167	Fabrication of Robust Optical Fibers by Controlling Film Drainage of Colloids in Capillaries. Angewandte Chemie - International Edition, 2012, 51, 3601-3605.	7.2	22
168	Protein Expression, Aggregation, and Triggered Release from Polymersomes as Artificial Cellâ€like Structures. Angewandte Chemie - International Edition, 2012, 51, 6416-6420.	7.2	162
169	Controlled Origami Folding of Hydrogel Bilayers with Sustained Reversibility for Robust Microcarriers. Angewandte Chemie - International Edition, 2012, 51, 1420-1423.	7. 2	194
170	Inside Back Cover: Controlled Origami Folding of Hydrogel Bilayers with Sustained Reversibility for Robust Microcarriers (Angew. Chem. Int. Ed. 6/2012). Angewandte Chemie - International Edition, 2012, 51, 1489-1489.	7.2	1
171	Amphiphilic Crescent-Moon-Shaped Microparticles Formed by Selective Adsorption of Colloids. Journal of the American Chemical Society, 2011, 133, 5516-5524.	6.6	159
172	Double-emulsion drops with ultra-thin shells for capsule templates. Lab on A Chip, 2011, 11, 3162-3166.	3.1	225
173	Multiple Polymersomes for Programmed Release of Multiple Components. Journal of the American Chemical Society, 2011, 133, 15165-15171.	6.6	219
174	Microfluidic fabrication of SERS-active microspheres for molecular detection. Lab on A Chip, 2011, 11, 87-92.	3.1	76
175	Self-assembled colloidal structures for photonics. NPG Asia Materials, 2011, 3, 25-33.	3.8	344
176	Packing of Emulsion Droplets: Structural and Functional Motifs for Multiâ€Cored Microcapsules. Advanced Functional Materials, 2011, 21, 1608-1615.	7.8	61
177	Microcapsules: Packing of Emulsion Droplets: Structural and Functional Motifs for Multi-Cored Microcapsules (Adv. Funct. Mater. 9/2011). Advanced Functional Materials, 2011, 21, 1538-1538.	7.8	0
178	Innentitelbild: Microfluidic Multicolor Encoding of Microspheres with Nanoscopic Surface Complexity for Multiplex Immunoassays (Angew. Chem. 5/2011). Angewandte Chemie, 2011, 123, 1000-1000.	1.6	1
179	Innentitelbild: Robust Chirped Photonic Crystals Created by Controlled Colloidal Diffusion (Angew.) Tj ETQq1 1 0.	784314 rş 1.6	gBT /Overloc
180	Microfluidic Multicolor Encoding of Microspheres with Nanoscopic Surface Complexity for Multiplex Immunoassays. Angewandte Chemie - International Edition, 2011, 50, 1171-1174.	7.2	100

#	Article	IF	CITATIONS
181	Multicompartment Polymersomes from Double Emulsions. Angewandte Chemie - International Edition, 2011, 50, 1648-1651.	7.2	245
182	Inside Cover: Microfluidic Multicolor Encoding of Microspheres with Nanoscopic Surface Complexity for Multiplex Immunoassays (Angew. Chem. Int. Ed. 5/2011). Angewandte Chemie - International Edition, 2011, 50, 968-968.	7.2	1
183	Oneâ€Step Emulsification of Multiple Concentric Shells with Capillary Microfluidic Devices. Angewandte Chemie - International Edition, 2011, 50, 8731-8734.	7.2	118
184	Robust Chirped Photonic Crystals Created by Controlled Colloidal Diffusion. Angewandte Chemie - International Edition, 2011, 50, 11649-11653.	7.2	34
185	Inside Cover: Robust Chirped Photonic Crystals Created by Controlled Colloidal Diffusion (Angew.) Tj ETQq1 1 0.7	784314 rg 7.2	BT _O /Overlock
186	Integration of Colloidal Photonic Crystals toward Miniaturized Spectrometers. Advanced Materials, 2010, 22, 946-950.	11.1	86
187	Dynamic Modulation of Photonic Bandgaps in Crystalline Colloidal Arrays Under Electric Field. Advanced Materials, 2010, 22, 4494-4498.	11.1	144
188	Titelbild: Janus Microspheres for a Highly Flexible and Impregnable Water-Repelling Interface (Angew.) Tj ETQq0 0	0,rgBT /O	verlock 10 T
189	Janus Microspheres for a Highly Flexible and Impregnable Waterâ€Repelling Interface. Angewandte Chemie - International Edition, 2010, 49, 2535-2538.	7.2	151
190	Magnetoresponsive Microparticles with Nanoscopic Surface Structures for Remote ontrolled Locomotion. Angewandte Chemie - International Edition, 2010, 49, 3786-3790.	7.2	88
191	Lithographically-featured photonic microparticles of colloidal assemblies. Physical Chemistry Chemical Physics, 2010, 12, 11861.	1.3	15
192	Microcapsules with Tailored Nanostructures by Microphase Separation of Block Copolymers. Chemistry of Materials, 2010, 22, 5593-5600.	3.2	21
193	Cover Picture: Janus Microspheres for a Highly Flexible and Impregnable Water-Repelling Interface (Angew. Chem. Int. Ed. 14/2010). Angewandte Chemie - International Edition, 2010, 49, 2447-2447.	7.2	1
194	Fabrication of nonspherical or marcoporous particles using emulsion droplets as confining geometries. , 2010, , .		0
195	Biofunctional colloids and their assemblies. Soft Matter, 2010, 6, 1092.	1.2	32
196	Microfluidic fabrication of microparticles with structural complexity using photocurable emulsion droplets. New Journal of Physics, 2009, 11, 075014.	1.2	32
197	Patterned Polymeric Domes with 3D and 2D Embedded Colloidal Crystals using Photocurable Emulsion Droplets. Advanced Materials, 2009, 21, 3771-3775.	11.1	37
198	Self-organization of colloidal nanospheres inside emulsion droplets: Higher-order clusters, supraparticles, and supraballs. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 345, 237-245.	2.3	30

#	Article	lF	Citations
199	Arrays of Ferromagnetic Nanorings with Variable Thickness Fabricated by Capillary Force Lithography. Langmuir, 2009, 25, 12535-12540.	1.6	15
200	Single-Step Fabrication of Monodisperse TiO ₂ Hollow Spheres with Embedded Nanoparticles in Microfluidic Devices. Chemistry of Materials, 2009, 21, 201-203.	3.2	79
201	Low-Threshold Lasing in 3D Dye-Doped Photonic Crystals Derived from Colloidal Self-Assemblies. Chemistry of Materials, 2009, 21, 4993-4999.	3.2	82
202	Optofluidic Fabrication of Functional Particles with Controlled Sizes, Shapes and Structures. , 2009, , .		0
203	Optofluidics technology based on colloids and their assemblies. Microfluidics and Nanofluidics, 2008, 4, 129-144.	1.0	27
204	Controlling Orientation and Order in Block Copolymer Thin Films. Advanced Materials, 2008, 20, 4851-4856.	11.1	44
205	Microspheres with Tunable Refractive Index by Controlled Assembly of Nanoparticles. Advanced Materials, 2008, 20, 3268-3273.	11.1	54
206	Optofluidic Assembly of Colloidal Photonic Crystals with Controlled Sizes, Shapes, and Structures. Advanced Materials, 2008, 20, 1649-1655.	11.1	154
207	Patterned Colloidal Photonic Domes and Balls Derived from Viscous Photocurable Suspensions. Advanced Materials, 2008, 20, 3211-3217.	11.1	68
208	Optofluidic Synthesis of Electroresponsive Photonic Janus Balls with Isotropic Structural Colors. Advanced Materials, 2008, 20, 4129-4134.	11.1	99
209	Inside Front Cover: Optofluidic Assembly of Colloidal Photonic Crystals with Controlled Sizes, Shapes, and Structures (Adv. Mater. 8/2008). Advanced Materials, 2008, 20, 1590-1590.	11.1	1
210	Homogeneous and heterogeneous binary colloidal clusters formed by evaporation-induced self-assembly inside droplets. Journal of Colloid and Interface Science, 2008, 318, 124-133.	5.0	38
211	Synthesis and assembly of structured colloidal particles. Journal of Materials Chemistry, 2008, 18, 2177.	6.7	277
212	Optofluidic integration of a photonic crystal nanolaser. Optics Express, 2008, 16, 6515.	1.7	35
213	Optofluidic Encapsulation of Crystalline Colloidal Arrays into Spherical Membrane. Journal of the American Chemical Society, 2008, 130, 6040-6046.	6.6	149
214	Photocurable Pickering Emulsion for Colloidal Particles with Structural Complexity. Langmuir, 2008, 24, 2365-2371.	1.6	56
215	Dissolution Arrest and Stability of Particle-Covered Bubbles. Physical Review Letters, 2007, 99, 188301.	2.9	150
216	Characterizing and tracking single colloidal particles with video holographic microscopy. Optics Express, 2007, 15, 18275.	1.7	272

#	ARTICLE	IF	CITATIONS
217	Particles with Coordinated Patches or Windows from Oil-in-Water Emulsions. Chemistry of Materials, 2007, 19, 3183-3193.	3.2	67
218	Polymeric Particles with Structural Complexity from Stable Immobilized Emulsions. Chemistry of Materials, 2007, 19, 4751-4760.	3.2	34
219	Microwave-Assisted Self-Organization of Colloidal Particles in Confining Aqueous Droplets. Journal of the American Chemical Society, 2006, 128, 10897-10904.	6.6	177
220	Self-Organization of Bidisperse Colloids in Water Droplets. Journal of the American Chemical Society, 2005, 127, 15968-15975.	6.6	209
221	Fabrication of Spherical Colloidal Crystals Using Electrospray. Langmuir, 2005, 21, 10416-10421.	1.6	44
222	Colloidal Clusters of Microspheres from Water-in-Oil Emulsions. Chemistry of Materials, 2005, 17, 5006-5013.	3.2	102