List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9141994/publications.pdf Version: 2024-02-01

SHIN-HVIIN KIM

#	Article	IF	CITATIONS
1	Self-assembled colloidal structures for photonics. NPG Asia Materials, 2011, 3, 25-33.	7.9	344
2	Colloidal Photonic Crystals toward Structural Color Palettes for Security Materials. Chemistry of Materials, 2013, 25, 2684-2690.	6.7	315
3	Synthesis and assembly of structured colloidal particles. Journal of Materials Chemistry, 2008, 18, 2177.	6.7	277
4	Chameleon-Inspired Mechanochromic Photonic Films Composed of Non-Close-Packed Colloidal Arrays. ACS Nano, 2017, 11, 11350-11357.	14.6	274
5	Characterizing and tracking single colloidal particles with video holographic microscopy. Optics Express, 2007, 15, 18275.	3.4	272
6	Multicompartment Polymersomes from Double Emulsions. Angewandte Chemie - International Edition, 2011, 50, 1648-1651.	13.8	245
7	25th Anniversary Article: Double Emulsion Templated Solid Microcapsules: Mechanics And Controlled Release. Advanced Materials, 2014, 26, 2205-2218.	21.0	226
8	Double-emulsion drops with ultra-thin shells for capsule templates. Lab on A Chip, 2011, 11, 3162-3166.	6.0	225
9	Multiple Polymersomes for Programmed Release of Multiple Components. Journal of the American Chemical Society, 2011, 133, 15165-15171.	13.7	219
10	Self-Organization of Bidisperse Colloids in Water Droplets. Journal of the American Chemical Society, 2005, 127, 15968-15975.	13.7	209
11	Fullâ€Spectrum Photonic Pigments with Nonâ€iridescent Structural Colors through Colloidal Assembly. Angewandte Chemie - International Edition, 2014, 53, 2899-2903.	13.8	206
12	Droplet Microfluidics for Producing Functional Microparticles. Langmuir, 2014, 30, 1473-1488.	3.5	199
13	Controlled Origami Folding of Hydrogel Bilayers with Sustained Reversibility for Robust Microcarriers. Angewandte Chemie - International Edition, 2012, 51, 1420-1423.	13.8	194
14	Microfluidic production of multiple emulsions and functional microcapsules. Lab on A Chip, 2016, 16, 3415-3440.	6.0	187
15	Microwave-Assisted Self-Organization of Colloidal Particles in Confining Aqueous Droplets. Journal of the American Chemical Society, 2006, 128, 10897-10904.	13.7	177
16	Protein Expression, Aggregation, and Triggered Release from Polymersomes as Artificial Cellâ€ l ike Structures. Angewandte Chemie - International Edition, 2012, 51, 6416-6420.	13.8	162
17	Amphiphilic Crescent-Moon-Shaped Microparticles Formed by Selective Adsorption of Colloids. Journal of the American Chemical Society, 2011, 133, 5516-5524.	13.7	159
18	Photo―and Thermoresponsive Polymersomes for Triggered Release. Angewandte Chemie - International Edition, 2012, 51, 12499-12503.	13.8	155

#	Article	IF	CITATIONS
19	Optofluidic Assembly of Colloidal Photonic Crystals with Controlled Sizes, Shapes, and Structures. Advanced Materials, 2008, 20, 1649-1655.	21.0	154
20	Single step emulsification for the generation of multi-component double emulsions. Soft Matter, 2012, 8, 10719.	2.7	152
21	Osmotic-pressure-controlled concentration of colloidal particles in thin-shelled capsules. Nature Communications, 2014, 5, 3068.	12.8	152
22	Janus Microspheres for a Highly Flexible and Impregnable Waterâ€Repelling Interface. Angewandte Chemie - International Edition, 2010, 49, 2535-2538.	13.8	151
23	Dissolution Arrest and Stability of Particle-Covered Bubbles. Physical Review Letters, 2007, 99, 188301.	7.8	150
24	Ultrathin Shell Double Emulsion Templated Giant Unilamellar Lipid Vesicles with Controlled Microdomain Formation. Small, 2014, 10, 950-956.	10.0	150
25	Optofluidic Encapsulation of Crystalline Colloidal Arrays into Spherical Membrane. Journal of the American Chemical Society, 2008, 130, 6040-6046.	13.7	149
26	Polymer Microcapsules with Programmable Active Release. Journal of the American Chemical Society, 2013, 135, 7744-7750.	13.7	149
27	Dynamic Modulation of Photonic Bandgaps in Crystalline Colloidal Arrays Under Electric Field. Advanced Materials, 2010, 22, 4494-4498.	21.0	144
28	Controlled Pixelation of Inverse Opaline Structures Towards Reflectionâ€Mode Displays. Advanced Materials, 2014, 26, 2391-2397.	21.0	141
29	Delayed Buckling and Guided Folding of Inhomogeneous Capsules. Physical Review Letters, 2012, 109, 134302.	7.8	130
30	One‣tep Emulsification of Multiple Concentric Shells with Capillary Microfluidic Devices. Angewandte Chemie - International Edition, 2011, 50, 8731-8734.	13.8	118
31	Flexible and Robust Superomniphobic Surfaces Created by Localized Photofluidization of Azopolymer Pillars. ACS Nano, 2017, 11, 7821-7828.	14.6	115
32	Robust Microfluidic Encapsulation of Cholesteric Liquid Crystals Toward Photonic Ink Capsules. Advanced Materials, 2015, 27, 627-633.	21.0	111
33	Colloidal Photonic Inks for Mechanochromic Films and Patterns with Structural Colors of High Saturation. Chemistry of Materials, 2019, 31, 8154-8162.	6.7	103
34	Colloidal Clusters of Microspheres from Water-in-Oil Emulsions. Chemistry of Materials, 2005, 17, 5006-5013.	6.7	102
35	Microfluidic Multicolor Encoding of Microspheres with Nanoscopic Surface Complexity for Multiplex Immunoassays. Angewandte Chemie - International Edition, 2011, 50, 1171-1174.	13.8	100
36	Optofluidic Synthesis of Electroresponsive Photonic Janus Balls with Isotropic Structural Colors. Advanced Materials, 2008, 20, 4129-4134.	21.0	99

#	Article	IF	CITATIONS
37	Nanostructured plasmonic substrates for use as SERS sensors. Nano Convergence, 2016, 3, 18.	12.1	99
38	Designing Structural-Color Patterns Composed of Colloidal Arrays. ACS Applied Materials & Interfaces, 2019, 11, 14485-14509.	8.0	98
39	Structural Color Palettes of Core–Shell Photonic Ink Capsules Containing Cholesteric Liquid Crystals. Advanced Materials, 2017, 29, 1606894.	21.0	95
40	Lithographically Encrypted Inverse Opals for Anti-Counterfeiting Applications. Small, 2016, 12, 3819-3826.	10.0	93
41	Magnetoresponsive Microparticles with Nanoscopic Surface Structures for Remote ontrolled Locomotion. Angewandte Chemie - International Edition, 2010, 49, 3786-3790.	13.8	88
42	Integration of Colloidal Photonic Crystals toward Miniaturized Spectrometers. Advanced Materials, 2010, 22, 946-950.	21.0	86
43	Inertial-ordering-assisted droplet microfluidics for high-throughput single-cell RNA-sequencing. Lab on A Chip, 2018, 18, 775-784.	6.0	85
44	Low-Threshold Lasing in 3D Dye-Doped Photonic Crystals Derived from Colloidal Self-Assemblies. Chemistry of Materials, 2009, 21, 4993-4999.	6.7	82
45	Photonic Capsule Sensors with Builtâ€In Colloidal Crystallites. Advanced Materials, 2018, 30, e1803387.	21.0	82
46	Single-Step Fabrication of Monodisperse TiO ₂ Hollow Spheres with Embedded Nanoparticles in Microfluidic Devices. Chemistry of Materials, 2009, 21, 201-203.	6.7	79
47	Wavelength-tunable and shape-reconfigurable photonic capsule resonators containing cholesteric liquid crystals. Science Advances, 2018, 4, eaat8276.	10.3	77
48	Microfluidic fabrication of SERS-active microspheres for molecular detection. Lab on A Chip, 2011, 11, 87-92.	6.0	76
49	Microfluidic Production of Uniform Microcarriers with Multicompartments through Phase Separation in Emulsion Drops. Chemistry of Materials, 2016, 28, 1430-1438.	6.7	74
50	Reconfigurable Photonic Capsules Containing Cholesteric Liquid Crystals with Planar Alignment. Angewandte Chemie - International Edition, 2015, 54, 15266-15270.	13.8	73
51	Monodisperse Emulsion Drop Microenvironments for Bacterial Biofilm Growth. Small, 2015, 11, 3954-3961.	10.0	71
52	Combination of a Sample Pretreatment Microfluidic Device with a Photoluminescent Graphene Oxide Quantum Dot Sensor for Trace Lead Detection. Analytical Chemistry, 2015, 87, 10969-10975.	6.5	70
53	Designing Multicolored Photonic Micropatterns through the Regioselective Thermal Compression of Inverse Opals. Advanced Functional Materials, 2016, 26, 4587-4594.	14.9	69
54	Patterned Colloidal Photonic Domes and Balls Derived from Viscous Photocurable Suspensions. Advanced Materials, 2008, 20, 3211-3217.	21.0	68

#	Article	IF	CITATIONS
55	Polymersomes Containing a Hydrogel Network for High Stability and Controlled Release. Small, 2013, 9, 124-131.	10.0	68
56	Liquidâ€Impermeable Inverse Opals with Invariant Photonic Bandgap. Advanced Materials, 2015, 27, 1282-1287.	21.0	68
57	Particles with Coordinated Patches or Windows from Oil-in-Water Emulsions. Chemistry of Materials, 2007, 19, 3183-3193.	6.7	67
58	Elaborate Design Strategies Toward Novel Microcarriers for Controlled Encapsulation and Release. Particle and Particle Systems Characterization, 2013, 30, 9-45.	2.3	67
59	Enhanced-throughput production of polymersomes using a parallelized capillary microfluidic device. Microfluidics and Nanofluidics, 2013, 14, 509-514.	2.2	66
60	Freestanding and Arrayed Nanoporous Microcylinders for Highly Active 3D SERS Substrate. Chemistry of Materials, 2013, 25, 2421-2426.	6.7	64
61	Macroporous Hydrogels for Fast and Reversible Switching between Transparent and Structurally Colored States. Advanced Functional Materials, 2020, 30, 2001318.	14.9	62
62	Packing of Emulsion Droplets: Structural and Functional Motifs for Multi ored Microcapsules. Advanced Functional Materials, 2011, 21, 1608-1615.	14.9	61
63	Anisotropic Microparticles Created by Phase Separation of Polymer Blends Confined in Monodisperse Emulsion Drops. Langmuir, 2015, 31, 937-943.	3.5	61
64	Osmotic-Pressure-Mediated Control of Structural Colors of Photonic Capsules. Chemistry of Materials, 2015, 27, 1014-1020.	6.7	59
65	Microfluidic Production of Biodegradable Microcapsules for Sustained Release of Hydrophilic Actives. Small, 2017, 13, 1700646.	10.0	57
66	Active Patchy Colloids with Shape-Tunable Dynamics. Journal of the American Chemical Society, 2019, 141, 14853-14863.	13.7	57
67	Direct writing of customized structural-color graphics with colloidal photonic inks. Science Advances, 2021, 7, eabj8780.	10.3	57
68	Photocurable Pickering Emulsion for Colloidal Particles with Structural Complexity. Langmuir, 2008, 24, 2365-2371.	3.5	56
69	Magnetoresponsive Discoidal Photonic Crystals Toward Active Color Pigments. Advanced Materials, 2014, 26, 5801-5807.	21.0	56
70	Microfluidic Production of Semipermeable Microcapsules by Polymerization-Induced Phase Separation. Langmuir, 2015, 31, 6027-6034.	3.5	56
71	Lithographic Design of Overhanging Microdisk Arrays Toward Omniphobic Surfaces. Advanced Materials, 2016, 28, 291-298.	21.0	55
72	Photoswitchable Surfactant-Driven Reversible Shape- and Color-Changing Block Copolymer Particles. Journal of the American Chemical Society, 2021, 143, 13333-13341.	13.7	55

#	Article	IF	CITATIONS
73	Microspheres with Tunable Refractive Index by Controlled Assembly of Nanoparticles. Advanced Materials, 2008, 20, 3268-3273.	21.0	54
74	Selective Coloration of Melanin Nanospheres through Resonant Mie Scattering. Advanced Materials, 2017, 29, 1700256.	21.0	54
75	Photonic Microcapsules Containing Singleâ€Crystal Colloidal Arrays with Optical Anisotropy. Advanced Materials, 2019, 31, e1900693.	21.0	54
76	Microcapsules Containing pH-Responsive, Fluorescent Polymer-Integrated MoS ₂ : An Effective Platform for in Situ pH Sensing and Photothermal Heating. ACS Applied Materials & Interfaces, 2018, 10, 9023-9031.	8.0	50
77	Standingâ€Waveâ€Assisted Creation of Nanopillar Arrays with Vertically Integrated Nanogaps for SERSâ€Active Substrates. Advanced Functional Materials, 2015, 25, 4681-4688.	14.9	49
78	Hydrocipher: Bioinspired Dynamic Structural Colorâ€Based Cryptographic Surface. Advanced Optical Materials, 2020, 8, 1901259.	7.3	49
79	Hydroxide ion-mediated synthesis of monodisperse dopamine–melanin nanospheres. Journal of Colloid and Interface Science, 2015, 458, 87-93.	9.4	48
80	An Antibody-Immobilized Silica Inverse Opal Nanostructure for Label-Free Optical Biosensors. Sensors, 2018, 18, 307.	3.8	48
81	Photonic Janus Balls with Controlled Magnetic Moment and Density Asymmetry. ACS Nano, 2020, 14, 15714-15722.	14.6	48
82	Formation of polymersomes with double bilayers templated by quadruple emulsions. Lab on A Chip, 2013, 13, 1351.	6.0	47
83	Magnetoresponsive Photonic Microspheres with Structural Color Gradient. Advanced Materials, 2017, 29, 1605450.	21.0	47
84	Amplified Photon Upconversion by Photonic Shell of Cholesteric Liquid Crystals. Journal of the American Chemical Society, 2017, 139, 5708-5711.	13.7	47
85	Surface Functionalized Hydrophobic Porous Particles Toward Water Treatment Application. Advanced Materials, 2013, 25, 3215-3221.	21.0	45
86	Fabrication of Spherical Colloidal Crystals Using Electrospray. Langmuir, 2005, 21, 10416-10421.	3.5	44
87	Controlling Orientation and Order in Block Copolymer Thin Films. Advanced Materials, 2008, 20, 4851-4856.	21.0	44
88	Photothermal Control of Membrane Permeability of Microcapsules for On-Demand Release. ACS Applied Materials & Interfaces, 2014, 6, 826-832.	8.0	43
89	Microfluidic fabrication of photo-responsive hydrogel capsules. Chemical Communications, 2013, 49, 1865.	4.1	42
90	Nonspherical Double Emulsions with Multiple Distinct Cores Enveloped by Ultrathin Shells. ACS Applied Materials & Interfaces, 2014, 6, 1294-1300.	8.0	42

#	Article	IF	CITATIONS
91	SERSâ€Activeâ€Charged Microgels for Size―and Chargeâ€&elective Molecular Analysis of Complex Biological Samples. Small, 2018, 14, e1802520.	10.0	40
92	Photonic Multishells Composed of Cholesteric Liquid Crystals Designed by Controlled Phase Separation in Emulsion Drops. Advanced Materials, 2020, 32, e2002166.	21.0	39
93	Homogeneous and heterogeneous binary colloidal clusters formed by evaporation-induced self-assembly inside droplets. Journal of Colloid and Interface Science, 2008, 318, 124-133.	9.4	38
94	Colorimetric Recording of Thermal Conditions on Polymeric Inverse Opals. Advanced Materials, 2019, 31, e1901398.	21.0	38
95	Elastic Photonic Microbeads as Building Blocks for Mechanochromic Materials. ACS Applied Polymer Materials, 2020, 2, 706-714.	4.4	38
96	Patterned Polymeric Domes with 3D and 2D Embedded Colloidal Crystals using Photocurable Emulsion Droplets. Advanced Materials, 2009, 21, 3771-3775.	21.0	37
97	Monodisperse Gas-Filled Microparticles from Reactions in Double Emulsions. Langmuir, 2012, 28, 6742-6745.	3.5	37
98	Microfluidic Fabrication of Stable Gas-Filled Microcapsules for Acoustic Contrast Enhancement. Langmuir, 2013, 29, 12352-12357.	3.5	37
99	Robust photonic microparticles comprising cholesteric liquid crystals for anti-forgery materials. Journal of Materials Chemistry C, 2017, 5, 7567-7573.	5.5	37
100	Thermoâ€Responsive Microcapsules with Tunable Molecular Permeability for Controlled Encapsulation and Release. Advanced Functional Materials, 2021, 31, 2100782.	14.9	37
101	Perforated Microcapsules with Selective Permeability Created by Confined Phase Separation of Polymer Blends. Chemistry of Materials, 2014, 26, 7166-7171.	6.7	36
102	Optofluidic integration of a photonic crystal nanolaser. Optics Express, 2008, 16, 6515.	3.4	35
103	Polymeric Particles with Structural Complexity from Stable Immobilized Emulsions. Chemistry of Materials, 2007, 19, 4751-4760.	6.7	34
104	Robust Chirped Photonic Crystals Created by Controlled Colloidal Diffusion. Angewandte Chemie - International Edition, 2011, 50, 11649-11653.	13.8	34
105	Metal Nanoparticle-Loaded Microgels with Selective Permeability for Direct Detection of Small Molecules in Biological Fluids. Chemistry of Materials, 2016, 28, 1559-1565.	6.7	34
106	Designing Multicolor Micropatterns of Inverse Opals with Photonic Bandgap and Surface Plasmon Resonance. Advanced Functional Materials, 2018, 28, 1706664.	14.9	34
107	Microfluidic fabrication of microparticles with structural complexity using photocurable emulsion droplets. New Journal of Physics, 2009, 11, 075014.	2.9	32
108	Biofunctional colloids and their assemblies. Soft Matter, 2010, 6, 1092.	2.7	32

#	Article	IF	CITATIONS
109	Self-Organization of Nanorods into Ultra-Long Range Two-Dimensional Monolayer End-to-End Network. Nano Letters, 2015, 15, 714-720.	9.1	32
110	Microfluidic Designing Microgels Containing Highly Concentrated Gold Nanoparticles for SERS Analysis of Complex Fluids. Small, 2019, 15, e1905076.	10.0	32
111	Microfluidic generation of PEG-b-PLA polymersomes containing alginate-based core hydrogel. Biomicrofluidics, 2015, 9, 024101.	2.4	31
112	Dynamic designing of microstructures by chemical gradient-mediated growth. Nature Communications, 2015, 6, 6584.	12.8	31
113	Photonic-crystal hydrogels with a rapidly tunable stop band and high reflectivity across the visible. Optical Materials Express, 2017, 7, 253.	3.0	31
114	Self-organization of colloidal nanospheres inside emulsion droplets: Higher-order clusters, supraparticles, and supraballs. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 345, 237-245.	4.7	30
115	Droplet-Guiding Superhydrophobic Arrays of Plasmonic Microposts for Molecular Concentration and Detection. ACS Applied Materials & amp; Interfaces, 2017, 9, 37201-37209.	8.0	30
116	Semipermeable Microcapsules with a Block-Polymer-Templated Nanoporous Membrane. Chemistry of Materials, 2018, 30, 273-279.	6.7	30
117	Single-step assembly of asymmetric vesicles. Lab on A Chip, 2019, 19, 749-756.	6.0	30
118	Colloidal assembly in droplets: structures and optical properties. Nanoscale, 2020, 12, 18576-18594.	5.6	29
119	Tomographic measurement of dielectric tensors at optical frequency. Nature Materials, 2022, 21, 317-324.	27.5	29
120	Controlled formation of double-emulsion drops in sudden expansion channels. Journal of Colloid and Interface Science, 2014, 415, 26-31.	9.4	28
121	Colloidal Assembly in Leidenfrost Drops for Noniridescent Structural Color Pigments. Langmuir, 2014, 30, 8350-8356.	3.5	28
122	Alginate microgels created by selective coalescence between core drops paired with an ultrathin shell. Journal of Materials Chemistry B, 2016, 4, 3232-3238.	5.8	28
123	Polymeric Inverse Glasses for Development of Noniridescent Structural Colors in Full Visible Range. ACS Applied Materials & Interfaces, 2016, 8, 12473-12480.	8.0	28
124	Depletion-Mediated Interfacial Assembly of Semiconductor Nanorods. Nano Letters, 2019, 19, 963-970.	9.1	28
125	Optofluidics technology based on colloids and their assemblies. Microfluidics and Nanofluidics, 2008, 4, 129-144.	2.2	27
126	Osmocapsules for Direct Measurement of Osmotic Strength. Small, 2014, 10, 1155-1162.	10.0	27

#	Article	IF	CITATIONS
127	Microfluidic Production of Capsulesâ€inâ€Capsules for Programed Release of Multiple Ingredients. Advanced Materials Technologies, 2018, 3, 1800006.	5.8	27
128	Structural Coloration with Noncloseâ€Packed Array of Bidisperse Colloidal Particles. Small, 2019, 15, e1804548.	10.0	26
129	Recent advances in the microfluidic production of functional microcapsules by multiple-emulsion templating. Lab on A Chip, 2022, 22, 2259-2291.	6.0	26
130	Large-Area Accurate Position Registry of Microparticles on Flexible, Stretchable Substrates Using Elastomer Templates. ACS Applied Materials & Interfaces, 2016, 8, 28149-28158.	8.0	25
131	Uniform Microgels Containing Agglomerates of Silver Nanocubes for Molecular Sizeâ€Selectivity and High SERS Activity. Small, 2017, 13, 1604048.	10.0	25
132	Doubleâ€Emulsionâ€Templated Anisotropic Microcapsules for pHâ€Triggered Release. Advanced Materials Interfaces, 2018, 5, 1701472.	3.7	25
133	Multicompartment Photonic Microcylinders toward Structural Color Inks. Chemistry of Materials, 2018, 30, 3789-3797.	6.7	25
134	Smart Microcapsules with Molecular Polarity―and Temperatureâ€Dependent Permeability. Small, 2019, 15, e1900434.	10.0	24
135	Composite Microgels Created by Complexation between Polyvinyl Alcohol and Graphene Oxide in Compressed Doubleâ€Emulsion Drops. Small, 2020, 16, e1903812.	10.0	24
136	Elastic Photonic Microcapsules Containing Colloidal Crystallites as Building Blocks for Macroscopic Photonic Surfaces. ACS Nano, 2021, 15, 12438-12448.	14.6	24
137	Creation of Faceted Polyhedral Microgels from Compressed Emulsions. Small, 2017, 13, 1701256.	10.0	23
138	Controlled Encapsulation of Cholesteric Liquid Crystals Using Emulsion Templates. Macromolecular Research, 2018, 26, 1054-1065.	2.4	23
139	Microfluidic Fabrication of Capsule Sensor Platform with Doubleâ€ S hell Structure. Advanced Functional Materials, 2019, 29, 1902670.	14.9	23
140	Controlled Assembly of Icosahedral Colloidal Clusters for Structural Coloration. Chemistry of Materials, 2020, 32, 9704-9712.	6.7	23
141	Photothermal Fabrics for Efficient Oil-Spill Remediation via Solar-Driven Evaporation Combined with Adsorption. ACS Applied Materials & amp; Interfaces, 2021, 13, 13106-13113.	8.0	23
142	Fabrication of Robust Optical Fibers by Controlling Film Drainage of Colloids in Capillaries. Angewandte Chemie - International Edition, 2012, 51, 3601-3605.	13.8	22
143	Microfluidic Design of Magnetoresponsive Photonic Microcylinders with Multicompartments. Small, 2015, 11, 4938-4945.	10.0	22
144	3D multilayered plasmonic nanostructures with high areal density for SERS. RSC Advances, 2017, 7, 17898-17905.	3.6	22

#	Article	IF	CITATIONS
145	Ultrathin Doubleâ€5hell Capsules for High Performance Photon Upconversion. Advanced Materials, 2017, 29, 1606830.	21.0	22
146	High-performance solution-processable flexible and transparent conducting electrodes with embedded Cu mesh. Journal of Materials Chemistry C, 2018, 6, 4389-4395.	5.5	22
147	Janus Microcarriers for Magnetic Fieldâ€Controlled Combination Chemotherapy of Hepatocellular Carcinoma. Advanced Functional Materials, 2019, 29, 1901384.	14.9	22
148	Plasmonic Janus Microspheres Created from Pickering Emulsion Drops. Advanced Materials, 2020, 32, e2001384.	21.0	22
149	Microcapsules with Tailored Nanostructures by Microphase Separation of Block Copolymers. Chemistry of Materials, 2010, 22, 5593-5600.	6.7	21
150	Coâ€Assembly of Colloids and Eumelanin Nanoparticles in Droplets for Structural Pigments with High Saturation. Small, 2022, 18, e2106048.	10.0	20
151	Photonic Microbeads Templated by Oilâ€inâ€Oil Emulsion Droplets for High Saturation of Structural Colors. Small, 2022, 18, e2105225.	10.0	20
152	Bicolored Janus Microparticles Created by Phase Separation in Emulsion Drops. Macromolecular Chemistry and Physics, 2017, 218, 1600265.	2.2	18
153	Controlled Insertion of Planar Defect in Inverse Opals for Anticounterfeiting Applications. ACS Applied Materials & Interfaces, 2017, 9, 43098-43104.	8.0	18
154	Early and direct detection of bacterial signaling molecules through one-pot Au electrodeposition onto paper-based 3D SERS substrates. Sensors and Actuators B: Chemical, 2022, 358, 131504.	7.8	18
155	Thermochromic Microcapsules Containing Chiral Mesogens Enclosed by Hydrogel Shell for Colorimetric Temperature Reporters. Advanced Functional Materials, 2022, 32, 2107275.	14.9	17
156	Stackedâ€Disk Nanotower Arrays for Use as Omniphobic Surfaceâ€Enhanced Raman Scattering Substrates. Advanced Optical Materials, 2016, 4, 1893-1900.	7.3	16
157	Interfacial Assembly of Amphiphilic Tiles for Reconfigurable Photonic Surfaces. ACS Applied Materials & Interfaces, 2019, 11, 45237-45245.	8.0	16
158	Improving mechanical and physical properties of ultra-thick carbon nanotube fiber by fast swelling and stretching process. Carbon, 2021, 172, 733-741.	10.3	16
159	Arrays of Ferromagnetic Nanorings with Variable Thickness Fabricated by Capillary Force Lithography. Langmuir, 2009, 25, 12535-12540.	3.5	15
160	Lithographically-featured photonic microparticles of colloidal assemblies. Physical Chemistry Chemical Physics, 2010, 12, 11861.	2.8	15
161	2-Dimensional colloidal micropatterning of cholesteric liquid crystal microcapsules for temperature-responsive color displays. Journal of Industrial and Engineering Chemistry, 2018, 68, 393-398.	5.8	15
162	Dual olored Janus Microspheres with Photonic and Plasmonic Faces. Small, 2022, 18, e2201437.	10.0	15

#	Article	IF	CITATIONS
163	Microfluidic Molding of Photonic Microparticles with Engraved Elastomeric Membranes. Small, 2014, 10, 3979-3985.	10.0	14
164	Plasmonic Microgels for Raman-Based Molecular Detection Created by Simultaneous Photoreduction and Photocross-linking. ACS Applied Materials & amp; Interfaces, 2020, 12, 48188-48197.	8.0	14
165	Microfluidic Production of Mechanochromic Photonic Fibers Containing Noncloseâ€Packed Colloidal Arrays. Small Science, 2021, 1, 2000058.	9.9	14
166	Controlling Smectic Liquid Crystal Defect Patterns by Physical Stamping-Assisted Domain Separation and Their Use as Templates for Quantum Dot Cluster Arrays. Langmuir, 2016, 32, 13418-13426.	3.5	13
167	Emulsion templated vesicles with symmetric or asymmetric membranes. Advances in Colloid and Interface Science, 2017, 247, 413-425.	14.7	13
168	Biodegradable Inverse Opals with Controlled Discoloration. Advanced Materials Interfaces, 2018, 5, 1701658.	3.7	13
169	Uniform Coating of Self-Assembled Noniridescent Colloidal Nanostructures using the Marangoni Effect and Polymers. Physical Review Applied, 2018, 10, .	3.8	13
170	Fluorescent Polymer-MoS ₂ -Embedded Microgels for Photothermal Heating and Colorimetric Monitoring. ACS Applied Materials & Interfaces, 2020, 12, 35415-35423.	8.0	13
171	Encapsulation of 3D plasmonic nanostructures with ultrathin hydrogel skin for rapid and direct detection of toxic small molecules in complex fluids. Nanoscale, 2020, 12, 12942-12949.	5.6	13
172	Reaction-Diffusion-Mediated Photolithography for Designing Pseudo-3D Microstructures. Small, 2017, 13, 1603516.	10.0	12
173	Thermoresponsive Microcarriers for Smart Release of Hydrate Inhibitors under Shear Flow. ACS Applied Materials & Interfaces, 2017, 9, 17178-17185.	8.0	12
174	Realâ€Time Monitoring of Colloidal Crystallization in Electrostatically‣evitated Drops. Small, 2020, 16, 1907478.	10.0	12
175	Photoâ€Reconfigurable Azopolymer Etch Mask: Photofluidizationâ€Đriven Reconfiguration and Edge Rectangularization. Small, 2018, 14, e1703250.	10.0	10
176	Compressible colloidal clusters from Pickering emulsions and their DNA functionalization. Chemical Communications, 2018, 54, 8328-8331.	4.1	10
177	Designing Semipermeable Hydrogel Shells with Controlled Thickness through Internal Osmosis in Tripleâ€Emulsion Droplets. Advanced Functional Materials, 2021, 31, 2105477.	14.9	10
178	Hierarchical nanostructures created by interference of high-order diffraction beams. Journal of Materials Chemistry C, 2016, 4, 1088-1095.	5.5	9
179	In Situ Electrodeposition of Gold Nanostructures in 3D Ultraâ€Thin Hydrogel Skins for Direct Molecular Detection in Complex Mixtures with High Sensitivity. Laser and Photonics Reviews, 2021, 15, 2100316.	8.7	9
180	Osmotic-Stress-Mediated Control of Membrane Permeability of Polymeric Microcapsules. Chemistry of Materials, 2018, 30, 7211-7220.	6.7	8

#	Article	IF	CITATIONS
181	Hydrogel-Assisted 3D Volumetric Hotspot for Sensitive Detection by Surface-Enhanced Raman Spectroscopy. International Journal of Molecular Sciences, 2022, 23, 1004.	4.1	8
182	Crystallization and Melting of Thermoresponsive Colloids Confined in Microcapsules. Chemistry of Materials, 2022, 34, 3509-3517.	6.7	8
183	Hydrogelâ€shelled biodegradable microspheres for sustained release of encapsulants. Journal of Polymer Science, 2022, 60, 1700-1709.	3.8	8
184	Soft and Tough Microcapsules with Doubleâ€Network Hydrogel Shells. Advanced Functional Materials, 2022, 32, .	14.9	8
185	Ordered Packing of Emulsion Droplets toward the Preparation of Adjustable Photomasks. Langmuir, 2014, 30, 5404-5411.	3.5	7
186	3D nanoporous plasmonic chips for extremely sensitive NO ₂ detection. Analyst, The, 2019, 144, 7162-7167.	3.5	7
187	Metallic Nanodimple Arrays for Wide-Angle Coloration via Plasmonic and Structural Resonances. Chemistry of Materials, 2021, 33, 4628-4637.	6.7	7
188	Osmosis-Mediated Microfluidic Production of Submillimeter-Sized Capsules with an Ultrathin Shell for Cosmetic Applications. ACS Applied Materials & amp; Interfaces, 2022, 14, 18159-18169.	8.0	7
189	Synthesis of snowman-shaped microparticles by monomer swelling and polymerization of crosslinked seed particles. Korean Journal of Chemical Engineering, 2012, 29, 1102-1107.	2.7	6
190	Liquid Crystals: Structural Color Palettes of Core–Shell Photonic Ink Capsules Containing Cholesteric Liquid Crystals (Adv. Mater. 23/2017). Advanced Materials, 2017, 29, .	21.0	6
191	Robust Biocatalysts Displayed on Crystalline Protein‣ayered Cells for Efficient and Sustainable Hydration of Carbon Dioxide. Advanced Functional Materials, 2021, 31, 2102497.	14.9	6
192	Colloidal Photonic Crystals for Sensor Applications. Springer Series in Materials Science, 2016, , 51-78.	0.6	5
193	Lithographically Designed Conical Microcarriers for Programed Release of Multiple Actives. Advanced Materials Interfaces, 2018, 5, 1701163.	3.7	5
194	Smallâ€Volume Plasmonic Microwell Array with 3D Hierarchical Nanomaterials for Plasmonâ€Enhanced Fluorescence Immunoassay. Advanced NanoBiomed Research, 2021, 1, 2000015.	3.6	5
195	Monolithic Photonic Crystals Created by Partial Coalescence of Core–Shell Particles. Langmuir, 2014, 30, 2369-2375.	3.5	4
196	Swelling and Deswelling Kinetics of Thermoâ€Responsive Microcapsules with Ultrathin Membrane. Advanced Materials Interfaces, 2021, 8, 2100538.	3.7	4
197	Designing Multicolor Graphics of Plasmonic Metasurfaces through Gradual Protrusion of Particles at Free Interface. Advanced Materials Interfaces, 2022, 9, .	3.7	4
198	Microfluidic Fabrication of Giant Unilamellar Lipid Vesicles with Controlled Microdomain Formation. Biophysical Journal, 2014, 106, 42a.	0.5	3

#	Article	IF	CITATIONS
199	Bio-inspired nanotadpoles with component-specific functionality. Journal of Materials Chemistry B, 2014, 2, 6462-6466.	5.8	3
200	Quasi-3D Plasmonic Nanowell Array for Molecular Enrichment and SERS-Based Detection. Nanomaterials, 2020, 10, 939.	4.1	3
201	Microfluidic Fabrication of Vesicles. Advances in Transport Phenomena, 2014, , 1-28.	0.5	3
202	Liquid Crystals: Robust Microfluidic Encapsulation of Cholesteric Liquid Crystals Toward Photonic Ink Capsules (Adv. Mater. 4/2015). Advanced Materials, 2015, 27, 771-771.	21.0	2
203	Hydrate formation in water-laden microcapsules for temperature-sensitive release of encapsulants. RSC Advances, 2016, 6, 85012-85018.	3.6	2
204	Hydrate Growth Inhibition by Poly(vinyl caprolactam) Released from Microcarriers under Turbulent Mixing Conditions. Energy & Fuels, 2018, 32, 9001-9009.	5.1	2
205	Photonic Multishells: Photonic Multishells Composed of Cholesteric Liquid Crystals Designed by Controlled Phase Separation in Emulsion Drops (Adv. Mater. 30/2020). Advanced Materials, 2020, 32, 2070227.	21.0	2
206	Inside Front Cover: Optofluidic Assembly of Colloidal Photonic Crystals with Controlled Sizes, Shapes, and Structures (Adv. Mater. 8/2008). Advanced Materials, 2008, 20, 1590-1590.	21.0	1
207	Titelbild: Janus Microspheres for a Highly Flexible and Impregnable Water-Repelling Interface (Angew.) Tj ETQq1	0,784314 2.0	4 rgBT /Overl
208	Cover Picture: Janus Microspheres for a Highly Flexible and Impregnable Water-Repelling Interface (Angew. Chem. Int. Ed. 14/2010). Angewandte Chemie - International Edition, 2010, 49, 2447-2447.	13.8	1
209	Innentitelbild: Microfluidic Multicolor Encoding of Microspheres with Nanoscopic Surface Complexity for Multiplex Immunoassays (Angew. Chem. 5/2011). Angewandte Chemie, 2011, 123, 1000-1000.	2.0	1
210	Inside Cover: Microfluidic Multicolor Encoding of Microspheres with Nanoscopic Surface Complexity for Multiplex Immunoassays (Angew. Chem. Int. Ed. 5/2011). Angewandte Chemie - International Edition, 2011, 50, 968-968.	13.8	1
211	Inside Back Cover: Controlled Origami Folding of Hydrogel Bilayers with Sustained Reversibility for Robust Microcarriers (Angew. Chem. Int. Ed. 6/2012). Angewandte Chemie - International Edition, 2012, 51, 1489-1489.	13.8	1
212	Microcapsules: Osmocapsules for Direct Measurement of Osmotic Strength (Small 6/2014). Small, 2014, 10, 1232-1232.	10.0	1
213	Photonic Crystals: Magnetoresponsive Discoidal Photonic Crystals Toward Active Color Pigments (Adv. Mater. 33/2014). Advanced Materials, 2014, 26, 5734-5734.	21.0	1
214	Photonic Crystals: Liquid-Impermeable Inverse Opals with Invariant Photonic Bandgap (Adv. Mater.) Tj ETQq0 0 0	rgBT/Ove	rlqck 10 Tf 5
215	Microfluidics: Advanced platform for designing polymeric microparticles, microcapsules, and microfibers. Journal of Polymer Science, 2022, 60, 1651-1652.	3.8	1
216	Fabrication of nonspherical or marcoporous particles using emulsion droplets as confining geometries. , 2010, , .		0

0

#	Article	IF	CITATIONS
217	Microcapsules: Packing of Emulsion Droplets: Structural and Functional Motifs for Multi-Cored Microcapsules (Adv. Funct. Mater. 9/2011). Advanced Functional Materials, 2011, 21, 1538-1538.	14.9	0
218	Innentitelbild: Robust Chirped Photonic Crystals Created by Controlled Colloidal Diffusion (Angew.) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 50
219	Inside Cover: Robust Chirped Photonic Crystals Created by Controlled Colloidal Diffusion (Angew.) Tj ETQq1 1 0.	784314 rg 13.8	BT /Overlock

220 Mie Co	icrogels: SERS-Active-Charged Microgels for Size- and Charge-Selective Molecular Analysis of omplex Biological Samples (Small 40/2018). Small, 2018, 14, 1870183.	10.0	0
221 Co Ele	olloidal Crystallization: Realâ€Time Monitoring of Colloidal Crystallization in ectrostatically‣evitated Drops (Small 11/2020). Small, 2020, 16, 2070060.	10.0	0

Optofluidic Fabrication of Functional Particles with Controlled Sizes, Shapes and Structures. , 2009, ,

.