
Alfonso Diaz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9140565/publications.pdf Version: 2024-02-01

ALEONSO DIAZ

#	Article	IF	CITATIONS
1	Long-term effect of neonatal antagonism of ionotropic glutamate receptors on dendritic spines and cognitive function in rats. Journal of Chemical Neuroanatomy, 2022, 119, 102054.	2.1	5
2	Oral Subacute Exposure to Cadmium LOAEL Dose Induces Insulin Resistance and Impairment of the Hormonal and Metabolic Liver-Adipose Axis in Wistar Rats. Biological Trace Element Research, 2022, 200, 4370-4384.	3.5	17
3	The Impact of Urbanization on Water Quality: Case Study on the Alto Atoyac Basin in Puebla, Mexico. Sustainability, 2022, 14, 667.	3.2	8
4	Sildenafil prevents right ventricular hypertrophy and improves heart rate variability in rats with pulmonary hypertension secondary to experimental diabetes. Clinical and Experimental Hypertension, 2022, 44, 355-365.	1.3	0
5	Mixture of Toxic Metals and Volatile Organic Compounds in a River Induces Cytotoxicity. Journal of Chemistry, 2022, 2022, 1-9.	1.9	2
6	Curcumin induces cortico-hippocampal neuronal reshaping and memory improvements in aged mice. Journal of Chemical Neuroanatomy, 2022, 121, 102091.	2.1	7
7	Clinical monitored in subjects metabolically healthy and unhealthy before and during a SARS-CoV-2 infection– A cross-sectional study in Mexican population. Cytokine, 2022, 153, 155868.	3.2	4
8	Effect of cadmium administration on the antioxidant system and neuronal death in the hippocampus of rats. Synapse, 2022, 76, .	1.2	7
9	Gallic acid improves recognition memory and decreases oxidativeâ€inflammatory damage in the rat hippocampus with metabolic syndrome. Synapse, 2021, 75, e22186.	1.2	22
10	Natural products present neurotrophic properties in neurons of the limbic system in aging rodents. Synapse, 2021, 75, e22185.	1.2	6
11	Amphetamine sensitization alters hippocampal neuronal morphology and memory and learning behaviors. Molecular Psychiatry, 2021, 26, 4784-4794.	7.9	23
12	Kidney Adaptations Prevent Loss of Trace Elements in Wistar Rats with Early Metabolic Syndrome. Biological Trace Element Research, 2021, 199, 1941-1953.	3.5	4
13	The Câ€ŧerminal fragment of the heavy chain of the tetanus toxin (Hcâ€₮eTx) improves motor activity and neuronal morphology in the limbic system of aged mice. Synapse, 2021, 75, e22193.	1.2	2
14	Sodium metavanadate treatment improves glycogen levels in multiple tissues in a model of metabolic syndrome caused by chronic cadmium exposure in Wistar rats. BioMetals, 2021, 34, 245-258.	4.1	9
15	Metforminium Decavanadate (MetfDeca) Treatment Ameliorates Hippocampal Neurodegeneration and Recognition Memory in a Metabolic Syndrome Model. Neurochemical Research, 2021, 46, 1151-1165.	3.3	10
16	Mapping afferent and pelvic postganglionic neurons of the urethra from female rats: The L6 DRG is the major primary afferent supplier. Neurourology and Urodynamics, 2021, 40, 1880-1888.	1.5	0
17	Bexarotene treatment increases dendritic length in the nucleus accumbens without change in the locomotor activity and memory behaviors, in old mice. Journal of Chemical Neuroanatomy, 2020, 104, 101734.	2.1	7
18	The treatment of Goji berry (Lycium barbarum) improves the neuroplasticity of the prefrontal cortex and hippocampus in aged rats. Journal of Nutritional Biochemistry, 2020, 83, 108416.	4.2	19

ALFONSO DIAZ

#	Article	IF	CITATIONS
19	Phenylbutyrate ameliorates prefrontal cortex, hippocampus, and nucleus accumbens neural atrophy as well as synaptophysin and GFAP stress in aging mice. Synapse, 2020, 74, e22177.	1.2	7
20	Effects of metformin on recognition memory and hippocampal neuroplasticity in rats with metabolic syndrome. Synapse, 2020, 74, e22153.	1.2	17
21	Aortic dysfunction by chronic cadmium exposure is linked to multiple metabolic risk factors that converge in anion superoxide production. Archives of Physiology and Biochemistry, 2020, , 1-9.	2.1	11
22	Vanadium and insulin: Partners in metabolic regulation. Journal of Inorganic Biochemistry, 2020, 208, 111094.	3.5	57
23	Inhibitory mechanism of 17β-aminoestrogens in the formation of Aβ aggregates. Journal of Molecular Modeling, 2019, 25, 229.	1.8	1
24	The Administration of Cadmium for 2, 3 and 4 Months Causes a Loss of Recognition Memory, Promotes Neuronal Hypotrophy and Apoptosis in the Hippocampus of Rats. Neurochemical Research, 2019, 44, 485-497.	3.3	28
25	Epicatechin Reduces Spatial Memory Deficit Caused by Amyloid-β25–35 Toxicity Modifying the Heat Shock Proteins in the CA1 Region in the Hippocampus of Rats. Antioxidants, 2019, 8, 113.	5.1	15
26	Vanadium in Biological Action: Chemical, Pharmacological Aspects, and Metabolic Implications in Diabetes Mellitus. Biological Trace Element Research, 2019, 188, 68-98.	3.5	209
27	The Effects of Non-selective Dopamine Receptor Activation by Apomorphine in the Mouse Hippocampus. Molecular Neurobiology, 2018, 55, 8625-8636.	4.0	20
28	Neuroinflammation induced by amyloid β25–35 modifies mucin-type O -glycosylation in the rat's hippocampus. Neuropeptides, 2018, 67, 56-62.	2.2	15
29	The NOAEL Metformin Dose Is Ineffective against Metabolic Disruption Induced by Chronic Cadmium Exposure in Wistar Rats. Toxics, 2018, 6, 55.	3.7	18
30	Metabolic Syndrome Exacerbates the Recognition Memory Impairment and Oxidative-Inflammatory Response in Rats with an Intrahippocampal Injection of Amyloid Beta 1–42. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-13.	4.0	20
31	Pharmacological and Toxicological Threshold of Bisammonium Tetrakis 4-(<i>N</i> , <i>N</i> -Dimethylamino)pyridinium Decavanadate in a Rat Model of Metabolic Syndrome and Insulin Resistance. Bioinorganic Chemistry and Applications, 2018, 2018, 1-13.	4.1	20
32	Atoyac River Pollution in the Metropolitan Area of Puebla, México. Water (Switzerland), 2018, 10, 267.	2.7	13
33	The neuropeptideâ€12 improves recognition memory and neuronal plasticity of the limbic system in old rats. Synapse, 2018, 72, e22036.	1.2	22
34	Metabolic syndrome causes recognition impairments and reduced hippocampal neuronal plasticity in rats. Journal of Chemical Neuroanatomy, 2017, 82, 65-75.	2.1	28
35	Effect of amyloid-l² (25–35) in hyperglycemic and hyperinsulinemic rats, effects on phosphorylation and O-GlcNAcylation of tau protein. Neuropeptides, 2017, 63, 18-27.	2.2	7
36	The aminoestrogen prolame increases recognition memory and hippocampal neuronal spine density in aged mice. Synapse, 2017, 71, e21987.	1.2	15

ALFONSO DIAZ

#	Article	IF	CITATIONS
37	Curcuma treatment prevents cognitive deficit and alteration of neuronal morphology in the limbic system of aging rats. Synapse, 2017, 71, e21952.	1.2	30
38	Changes on serum and hepatic lipidome after a chronic cadmium exposure in Wistar rats. Archives of Biochemistry and Biophysics, 2017, 635, 52-59.	3.0	23
39	Alzheimer's disease and metabolic syndrome: A link from oxidative stress and inflammation to neurodegeneration. Synapse, 2017, 71, e21990.	1.2	131
40	Energy Drink Administration in Combination with Alcohol Causes an Inflammatory Response and Oxidative Stress in the Hippocampus and Temporal Cortex of Rats. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-9.	4.0	27
41	Antioxidative stress effect of epicatechin and catechin induced by Aβ25–35 in rats and use of the electrostatic potential and the Fukui function as a tool to elucidate specific sites of interaction. Neuropeptides, 2016, 59, 89-95.	2.2	13
42	The effects of amphetamine exposure on juvenile rats on the neuronal morphology of the limbic system at prepubertal, pubertal and postpubertal ages. Journal of Chemical Neuroanatomy, 2016, 77, 68-77.	2.1	16
43	Chronic administration of resveratrol prevents morphological changes in prefrontal cortex and hippocampus of aged rats. Synapse, 2016, 70, 206-217.	1.2	49
44	Neuronal and brain morphological changes in animal models of schizophrenia. Behavioural Brain Research, 2016, 301, 190-203.	2.2	68
45	Resveratrol effects on neural connectivity during aging. Neural Regeneration Research, 2016, 11, 1067.	3.0	9
46	A high calorie diet causes memory loss, metabolic syndrome and oxidative stress into hippocampus and temporal cortex of rats. Synapse, 2015, 69, 421-433.	1.2	73
47	Stevia rebaudiana loaded titanium oxide nanomaterials as an antidiabetic agent in rats. Revista Brasileira De Farmacognosia, 2015, 25, 145-151.	1.4	12
48	Dendritic morphology changes in neurons from the ventral hippocampus, amygdala and nucleus accumbens in rats with neonatal lesions into the prefrontal cortex. Synapse, 2015, 69, 314-325.	1.2	13
49	A mixture of chamomile and star anise has anti-motility and antidiarrheal activities in mice. Revista Brasileira De Farmacognosia, 2014, 24, 419-424.	1.4	12
50	Unilateral injection of Aβ _{25–35} in the hippocampus reduces the number of dendritic spines in hyperglycemic rats. Synapse, 2014, 68, 585-594.	1.2	23
51	Aminoguanidine treatment ameliorates inflammatory responses and memory impairment induced by amyloid-beta 25–35 injection in rats. Neuropeptides, 2014, 48, 153-159.	2.2	50
52	Amyloid-β25–35 induces a permanent phosphorylation of HSF-1, but a transitory and inflammation-independent overexpression of Hsp-70 in C6 astrocytoma cells. Neuropeptides, 2013, 47, 339-346.	2.2	11
53	Aβ25-35 Injection into the Temporal Cortex Induces Chronic Inflammation that Contributes to Neurodegeneration and Spatial Memory Impairment in Rats. Journal of Alzheimer's Disease, 2012, 30, 505-522.	2.6	64
54	Neuroprotective effect of the aminoestrogen prolame against impairment of learning and memory skills in rats injected with amyloid-β-25–35 into the hippocampus. European Journal of Pharmacology, 2012, 685, 74-80.	3.5	24

ALFONSO DIAZ

#	Article	IF	CITATIONS
55	Alteration of the sialylation pattern and memory deficits by injection of Aβ(25–35) into the hippocampus of rats. Neuroscience Letters, 2011, 495, 11-16.	2.1	23
56	The role of NOS in the impairment of spatial memory and damaged neurons in rats injected with amyloid beta 25–35 into the temporal cortex. Pharmacology Biochemistry and Behavior, 2011, 98, 67-75.	2.9	49
57	The amyloid-β25–35 injection into the CA1 region of the neonatal rat hippocampus impairs the long-term memory because of an increase of nitric oxide. Neuroscience Letters, 2010, 468, 151-155.	2.1	22
58	Antioxidant effects of Epicatechin on the hippocampal toxicity caused by Amyloid-beta 25-35 in rats. European Journal of Pharmacology, 2009, 616, 122-127.	3.5	67
59	Neuroprotective effect of alpha-asarone on spatial memory and nitric oxide levels in rats injected with amyloid-l²(25–35). Neuroscience Letters, 2009, 453, 98-103.	2.1	86
60	Amyloid-β25–35 impairs memory and increases NO in the temporal cortex of rats. Neuroscience Research, 2009, 63, 129-137.	1.9	60