
Gerard Pals

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9140121/publications.pdf Version: 2024-02-01

CEDADD DAIS

#	Article	IF	CITATIONS
1	Phenotypic Variation in Vietnamese Osteogenesis Imperfecta Patients Sharing a Recessive P3H1 Pathogenic Variant. Genes, 2022, 13, 407.	2.4	2
2	Primary ciliary dyskinesia in Volendam: Diagnostic and phenotypic features in patients with a <scp><i>CCDC114</i></scp> mutation. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2022, 190, 89-101.	1.6	5
3	Prevalence and Hospital Admissions in Patients With Osteogenesis Imperfecta in The Netherlands: A Nationwide Registry Study. Frontiers in Endocrinology, 2022, 13, 869604.	3.5	7
4	Mechanical stress regulates bone regulatory gene expression independent of estrogen and vitamin D deficiency in rats. Journal of Orthopaedic Research, 2021, 39, 42-52.	2.3	9
5	Collagen transport and related pathways in Osteogenesis Imperfecta. Human Genetics, 2021, 140, 1121-1141.	3.8	42
6	Fibrodysplasia Ossificans Progressiva: What Have We Achieved and Where Are We Now? Follow-up to the 2015 Lorentz Workshop. Frontiers in Endocrinology, 2021, 12, 732728.	3.5	15
7	An inÂvitro model to evaluate the properties of matrices produced by fibroblasts from osteogenesis imperfecta and Ehlers-Danlos Syndrome patients. Biochemical and Biophysical Research Communications, 2020, 521, 310-317.	2.1	2
8	Interaction between KDELR2 and HSP47 as a Key Determinant in Osteogenesis Imperfecta Caused by Bi-allelic Variants in KDELR2. American Journal of Human Genetics, 2020, 107, 989-999.	6.2	35
9	Collaboration Around Rare Bone Diseases Leads to the Unique Organizational Incentive of the Amsterdam Bone Center. Frontiers in Endocrinology, 2020, 11, 481.	3.5	3
10	Diagnostic Value of Magnetic Resonance Imaging in Fibrodysplasia Ossificans Progressiva. JBMR Plus, 2020, 4, e10363.	2.7	7
11	Bioactivity of compounds secreted by symbiont bacteria of Nudibranchs from Indonesia. PeerJ, 2020, 8, e8093.	2.0	9
12	Pathogenic effect of a <i>TGFBR1</i> mutation in a family with Loeys–Dietz syndrome. Molecular Genetics & Genomic Medicine, 2019, 7, e00943.	1.2	3
13	The first family with adult osteogenesis imperfecta caused by a novel homozygous mutation in <i>CREB3L1</i> . Molecular Genetics & Genomic Medicine, 2019, 7, e823.	1.2	11
14	Evolution of heterotopic bone in fibrodysplasia ossificans progressiva: An [18F]NaF PET/CT study. Bone, 2019, 124, 1-6.	2.9	20
15	Diagnostic yield of a targeted gene panel in primary ciliary dyskinesia patients. Human Mutation, 2018, 39, 653-665.	2.5	38
16	Periodontal ligament fibroblasts as a cell model to study osteogenesis and osteoclastogenesis in fibrodysplasia ossificans progressiva. Bone, 2018, 109, 168-177.	2.9	28
17	[18F]NaF PET/CT scan as an early marker of heterotopic ossification in fibrodysplasia ossificans progressiva. Bone, 2018, 109, 143-146.	2.9	31
18	Betaglycan (TGFBR3) up-regulation correlates with increased TGF-β signaling in Marfan patient fibroblasts in vitro. Cardiovascular Pathology, 2018, 32, 44-49.	1.6	11

#	Article	IF	CITATIONS
19	Flareâ€Up After Maxillofacial Surgery in a Patient With Fibrodysplasia Ossificans Progressiva: An [¹⁸ F]â€NaF PET/CT Study and a Systematic Review. JBMR Plus, 2018, 2, 55-58.	2.7	21
20	An in vitro method to keep human aortic tissue sections functionally and structurally intact. Scientific Reports, 2018, 8, 8094.	3.3	9
21	Mutations in PIH1D3 Cause X-Linked Primary Ciliary Dyskinesia with Outer and Inner Dynein Arm Defects. American Journal of Human Genetics, 2017, 100, 160-168.	6.2	136
22	Transdifferentiation of Human Dermal Fibroblasts to Smooth Muscle-Like Cells to Study the Effect of <i>MYH11</i> and <i>ACTA2</i> Mutations in Aortic Aneurysms. Human Mutation, 2017, 38, 439-450.	2.5	18
23	Relationship between fibrillin-1 genotype and severity of cardiovascular involvement in Marfan syndrome. Heart, 2017, 103, 1795-1799.	2.9	74
24	Genotype impacts survival in Marfan syndrome. European Heart Journal, 2016, 37, 3285-3290.	2.2	114
25	Inhibition of TGFβ signaling decreases osteogenic differentiation of fibrodysplasia ossificans progressiva fibroblasts in a novel in vitro model of the disease. Bone, 2016, 84, 169-180.	2.9	38
26	<i>SMAD2</i> Mutations Are Associated with Arterial Aneurysms and Dissections. Human Mutation, 2015, 36, 1145-1149.	2.5	74
27	The revised role of TGF-Î ² in aortic aneurysms in Marfan syndrome. Netherlands Heart Journal, 2015, 23, 116-121.	0.8	34
28	Primary ciliary dyskinesia: From diagnosis to molecular mechanisms. Journal of Pediatric Genetics, 2015, 03, 115-127.	0.7	3
29	The Risk for Type B Aortic Dissection in Marfan Syndrome. Journal of the American College of Cardiology, 2015, 65, 246-254.	2.8	107
30	Beneficial Outcome of Losartan Therapy Depends on Type of <i>FBN1</i> Mutation in Marfan Syndrome. Circulation: Cardiovascular Genetics, 2015, 8, 383-388.	5.1	143
31	Clinical Utility Gene Card for: Fibrodysplasia ossificans progressiva. European Journal of Human Genetics, 2015, 23, 1431-1431.	2.8	18
32	Familial Ehlersâ€Danlos syndrome with lethal arterial events caused by a mutation in <i>COL5A1</i> . American Journal of Medical Genetics, Part A, 2015, 167, 1196-1203.	1.2	47
33	Combined exome and whole-genome sequencing identifies mutations in <i>ARMC4</i> as a cause of primary ciliary dyskinesia with defects in the outer dynein arm. Journal of Medical Genetics, 2014, 51, 61-67.	3.2	88
34	RNA Sequencing of Creatine Transporter (SLC6A8) Deficient Fibroblasts Reveals Impairment of the Extracellular Matrix. Human Mutation, 2014, 35, 1128-1135.	2.5	8
35	Diagnosis and genetics of Marfan syndrome. Expert Opinion on Orphan Drugs, 2014, 2, 1049-1062.	0.8	18
36	Relation between genotype and left-ventricular dilatation in patients with Marfan syndrome. Gene, 2014, 534, 40-43.	2.2	32

#	Article	IF	CITATIONS
37	<i>PLS3</i> Mutations in X-Linked Osteoporosis with Fractures. New England Journal of Medicine, 2013, 369, 1529-1536.	27.0	171
38	Splice-Site Mutations in the Axonemal Outer Dynein Arm Docking Complex Gene CCDC114 Cause Primary Ciliary Dyskinesia. American Journal of Human Genetics, 2013, 92, 88-98.	6.2	176
39	Mutations in ZMYND10, a Gene Essential for Proper Axonemal Assembly of Inner and Outer Dynein Arms in Humans and Flies, Cause Primary Ciliary Dyskinesia. American Journal of Human Genetics, 2013, 93, 346-356.	6.2	167
40	Exhaled molecular profiles in the assessment of cystic fibrosis and primary ciliary dyskinesia. Journal of Cystic Fibrosis, 2013, 12, 454-460.	0.7	55
41	Incomplete segregation of MYH11 variants with thoracic aortic aneurysms and dissections and patent ductus arteriosus. European Journal of Human Genetics, 2013, 21, 487-493.	2.8	36
42	Clinical utility gene card for: osteogenesis imperfecta. European Journal of Human Genetics, 2013, 21, 1-4.	2.8	68
43	Mutations in FKBP10, which result in Bruck syndrome and recessive forms of osteogenesis imperfecta, inhibit the hydroxylation of telopeptide lysines in bone collagen. Human Molecular Genetics, 2013, 22, 1-17.	2.9	135
44	EMQN best practice guidelines for the laboratory diagnosis of osteogenesis imperfecta. European Journal of Human Genetics, 2012, 20, 11-19.	2.8	107
45	Phenotypic spectrum of the SMAD3-related aneurysms–osteoarthritis syndrome. Journal of Medical Genetics, 2012, 49, 47-57.	3.2	221
46	Marfan syndrome: Progress report. Progress in Pediatric Cardiology, 2012, 34, 9-14.	0.4	13
47	Validation of a quantitative PCR-high-resolution melting protocol for simultaneous screening ofCOL1A1andCOL1A2point mutations and large rearrangements: Application for diagnosis of osteogenesis imperfecta. Human Mutation, 2012, 33, 1697-1707.	2.5	14
48	Ehlers–Danlos arthrochalasia type (VIIA–B) – expanding the phenotype: from prenatal life through adulthood. Clinical Genetics, 2012, 82, 121-130.	2.0	40
49	Inflammation Aggravates Disease Severity in Marfan Syndrome Patients. PLoS ONE, 2012, 7, e32963.	2.5	65
50	Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis. Nature Genetics, 2011, 43, 121-126.	21.4	583
51	The clinical spectrum of complete FBN1 allele deletions. European Journal of Human Genetics, 2011, 19, 247-252.	2.8	65
52	Osteogenesis Imperfecta: A Review with Clinical Examples. Molecular Syndromology, 2011, 2, 1-20.	0.8	159
53	Lethal/Severe Osteogenesis Imperfecta in a Large Family: A Novel Homozygous LEPRE1 Mutation and Bone Histological Findings. Pediatric and Developmental Pathology, 2011, 14, 228-234.	1.0	23
54	The clinical spectrum of missense mutations of the first aspartic acid of cbEGF-like domains in fibrillin-1 including a recessive family. Human Mutation, 2010, 31, E1915-E1927.	2.5	25

#	Article	IF	CITATIONS
55	Osteogenesis Imperfecta, Normal Collagen Folding, and Lack of Cyclophilin B. New England Journal of Medicine, 2010, 362, 1940-1942.	27.0	4
56	Complete COL1A1 allele deletions in osteogenesis imperfecta. Genetics in Medicine, 2010, 12, 736-741.	2.4	35
57	Classification of Osteogenesis Imperfecta revisited. European Journal of Medical Genetics, 2010, 53, 1-5.	1.3	184
58	CRTAP mutations in lethal and severe osteogenesis imperfecta: the importance of combining biochemical and molecular genetic analysis. European Journal of Human Genetics, 2009, 17, 1560-1569.	2.8	44
59	PPIB Mutations Cause Severe Osteogenesis Imperfecta. American Journal of Human Genetics, 2009, 85, 521-527.	6.2	257
60	Compound-heterozygous Marfan syndrome. European Journal of Medical Genetics, 2009, 52, 1-5.	1.3	28
61	Genetic subtyping of Fanconi anemia by comprehensive mutation screening. Human Mutation, 2008, 29, 159-166.	2.5	65
62	The many faces of aggressive aortic pathology: Loeys-Dietz syndrome. Netherlands Heart Journal, 2008, 16, 299-304.	0.8	47
63	Intracranial Hypertension in 2 Children With Marfan Syndrome. Journal of Child Neurology, 2008, 23, 954-955.	1.4	2
64	Hypomorphic Mutations in the Gene Encoding a Key Fanconi Anemia Protein, FANCD2, Sustain a Significant Group of FA-D2 Patients with Severe Phenotype. American Journal of Human Genetics, 2007, 80, 895-910.	6.2	115
65	Fanconi anemia is associated with a defect in the BRCA2 partner PALB2. Nature Genetics, 2007, 39, 159-161.	21.4	402
66	Homozygosity for a FBN1 missense mutation: clinical and molecular evidence for recessive Marfan syndrome. European Journal of Human Genetics, 2007, 15, 930-935.	2.8	32
67	BRCA1 and BRCA2 germline mutation analysis in the Indonesian population. Breast Cancer Research and Treatment, 2007, 106, 297-304.	2.5	56
68	High-resolution mapping of molecular events associated with immortalization, transformation, and progression to breast cancer in the MCF10 model. Breast Cancer Research and Treatment, 2006, 96, 177-186.	2.5	73
69	Muscle weakness as presenting symptom of osteogenesis imperfecta. European Journal of Pediatrics, 2006, 165, 392-394.	2.7	14
70	Novel inactivating mutations of FANCC in Brazilian patients with Fanconi anemia. Human Mutation, 2006, 27, 214-214.	2.5	10
71	Fine-Mapping Loss of Gene Architecture at the CDKN2B (p15INK4b), CDKN2A (p14ARF, p16INK4a), and MTAP Genes in Head and Neck Squamous Cell Carcinoma. JAMA Otolaryngology, 2006, 132, 409.	1.2	60
72	Neonatal Marfan syndrome: clinical report and review of the literature. Clinical Dysmorphology, 2005, 14, 81-84.	0.3	32

#	Article	IF	CITATIONS
73	The DNA helicase BRIP1 is defective in Fanconi anemia complementation group J. Nature Genetics, 2005, 37, 934-935.	21.4	399
74	The Genetic Basis of Pachyonychia Congenita. Journal of Investigative Dermatology Symposium Proceedings, 2005, 10, 21-30.	0.8	98
75	Genome-wide Linkage in Three Dutch Families Maps a Locus for Abdominal Aortic Aneurysms to Chromosome 19q13.3. European Journal of Vascular and Endovascular Surgery, 2005, 30, 29-35.	1.5	38
76	Should chromosome breakage studies be performed in patients with VACTERL association?. American Journal of Medical Genetics, Part A, 2005, 137A, 55-58.	1.2	69
77	Generation and Molecular Characterization of Head and Neck Squamous Cell Lines of Fanconi Anemia Patients. Cancer Research, 2005, 65, 1271-1276.	0.9	76
78	Mutations Near Amino End of α1(I) Collagen Cause Combined Osteogenesis Imperfecta/Ehlers-Danlos Syndrome by Interference with N-propeptide Processing. Journal of Biological Chemistry, 2005, 280, 19259-19269.	3.4	118
79	Fanconi Anemia. JAMA Otolaryngology, 2005, 131, 635.	1.2	55
80	The parent-of-origin effect of 10q22 in pre-eclamptic females coincides with two regions clustered for genes with down-regulated expression in androgenetic placentas. Molecular Human Reproduction, 2004, 10, 589-598.	2.8	116
81	Genome-Wide Linkage in a Large Dutch Consanguineous Family Maps a Locus for Intracranial Aneurysms to Chromosome 2p13. Stroke, 2004, 35, 2276-2281.	2.0	47
82	Genome Scan for Familial Abdominal Aortic Aneurysm Using Sex and Family History as Covariates Suggests Genetic Heterogeneity and Identifies Linkage to Chromosome 19q13. Circulation, 2004, 109, 2103-2108.	1.6	120
83	X-linked inheritance of Fanconi anemia complementation group B. Nature Genetics, 2004, 36, 1219-1224.	21.4	271
84	Comprehensive molecular screening of theFBN1gene favors locus homogeneity of classical Marfan syndrome. Human Mutation, 2004, 24, 140-146.	2.5	210
85	Fanconi Anemia. , 2004, , 447-451.		0
86	Ehlers-Danlos syndrome type IV: unusual congenital anomalies in a mother and son with a COL3A1 mutation and a normal collagen III protein profile. Clinical Genetics, 2003, 63, 224-227.	2.0	26
87	Expression of differentiation and proliferation related proteins in epithelium of prophylactically removed ovaries from women with a hereditary female adnexal cancer predisposition. Histopathology, 2003, 43, 26-32.	2.9	38
88	Familial abdominal aortic aneurysms: Collection of 233 multiplex families. Journal of Vascular Surgery, 2003, 37, 340-345.	1.1	110
89	Delineating Genetic Pathways of Disease Progression in Head and Neck Squamous Cell Carcinoma. JAMA Otolaryngology, 2003, 129, 702.	1.2	57
90	Offering Preconceptional Cystic Fibrosis Carrier Couple Screening in the Absence of Established Preconceptional Care Services. Public Health Genomics, 2003, 6, 5-13.	1.0	36

#	Article	IF	CITATIONS
91	Large genomic deletions and duplications in the BRCA1 gene identified by a novel quantitative method. Cancer Research, 2003, 63, 1449-53.	0.9	233
92	Biallelic Inactivation of <i>BRCA2</i> in Fanconi Anemia. Science, 2002, 297, 606-609.	12.6	1,072
93	Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Research, 2002, 30, 57e-57.	14.5	2,173
94	LINKAGE AND ASSOCIATION STUDIES OF <i>IL1B</i> AND <i>IL1RN</i> GENE POLYMORPHISMS IN PREECLAMPSIA. Hypertension in Pregnancy, 2002, 21, 23-38.	1.1	34
95	Genomic deletions of MSH2 and MLH1 in colorectal cancer families detected by a novel mutation detection approach. British Journal of Cancer, 2002, 87, 892-897.	6.4	155
96	Searching for preeclampsia genes: the current position. European Journal of Obstetrics, Gynecology and Reproductive Biology, 2002, 105, 94-113.	1.1	138
97	Familial Abdominal Aortic Aneurysm: a Systematic Review of a Genetic Background. European Journal of Vascular and Endovascular Surgery, 2002, 24, 105-116.	1.5	84
98	Evaluation and application of denaturing HPLC for mutation detection in Marfan syndrome: Identification of 20 novel mutations and two novel polymorphisms in theFBN1gene. Human Mutation, 2002, 19, 443-456.	2.5	58
99	Establishing a molecular continuum in breast cancer DNA microarrays and benign breast disease. Cytometry, 2002, 47, 56-59.	1.8	9
100	Detection of a Single Base Substitution in Single Cells by Melting Peak Analysis Using Dual-Color Hybridization Probes. , 2002, , 77-84.		0
101	Detection of a single base substitution in a single cell using the LightCyclerâ,,¢. Journal of Proteomics, 2001, 47, 121-129.	2.4	16
102	Polymorphisms in the tumor necrosis factor and lymphotoxin-α gene region and preeclampsia. Obstetrics and Gynecology, 2001, 98, 612-619.	2.4	28
103	Type III Collagen Deficiency in a Family with Intracranial Aneurysms. Cerebrovascular Diseases, 2001, 11, 92-94.	1.7	10
104	Polymorphisms in the Tumor Necrosis Factor and Lymphotoxin-α Gene Region and Preeclampsia. Obstetrics and Gynecology, 2001, 98, 612-619.	2.4	20
105	Dysplastic changes in prophylactically removed Fallopian tubes of women predisposed to developing ovarian cancer. Journal of Pathology, 2001, 195, 451-456.	4.5	681
106	A genome-wide scan for preeclampsia in the Netherlands. European Journal of Human Genetics, 2001, 9, 758-764.	2.8	140
107	Mutations in the gene for methylenetetrahydrofolate reductase, homocysteine levels, and vitamin status in women with a history of preeclampsia. American Journal of Obstetrics and Gynecology, 2001, 184, 394-402.	1.3	71
108	TGFB1 gene polymorphisms and inflammatory bowel disease. Immunogenetics, 2000, 51, 869-872.	2.4	20

#	Article	IF	CITATIONS
109	â€~Identical' twins with discordant karyotypes. Prenatal Diagnosis, 1999, 19, 72-76.	2.3	105
110	A rapid and sensitive approach to mutation detection using real-time polymerase chain reaction and melting curve analyses, using BRCA1 as an example*. Molecular Diagnosis and Therapy, 1999, 4, 241-246.	1.1	25
111	Determinants of Fasting and Post-Methionine Homocysteine Levels in Families Predisposed to Hyperhomocysteinemia and Premature Vascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19, 1316-1324.	2.4	23
112	Type III Collagen Deficiency in Saccular Intracranial Aneurysms. Stroke, 1999, 30, 1628-1631.	2.0	36
113	Clinical and genetic evaluation of thirty ovarian cancer families. American Journal of Obstetrics and Gynecology, 1998, 178, 85-90.	1.3	43
114	Exon 6 skipping in the fanconi anemia C gene associated with a nonsense/missense mutation (775C→T) in exon 5: The first example of a nonsense mutation in one exon causing skipping of another downstream. Human Mutation, 1998, 11, S25-S27.	2.5	6
115	The role of type III collagen in spontaneous cervical arterial dissections. Annals of Neurology, 1998, 43, 494-498.	5.3	57
116	A New BRCA1 Mutation in a Filipino Woman With a Family History of Breast and Ovarian Cancer. Diagnostic Molecular Pathology, 1998, 7, 164-167.	2.1	5
117	Gastric Non-Hodgkin Lymphomas of Mucosa-Associated Lymphoid Tissue Are not Associated With More Aggressive <i>Helicobacter pylori</i> Strains as Identified by CagA. American Journal of Clinical Pathology, 1996, 106, 670-675.	0.7	46
118	Expression cloning of a cDNA for the major Fanconi anaemia gene, FAA. Nature Genetics, 1996, 14, 320-323.	21.4	401
119	Localization of the Gene for Rapidly Progressive Autosomal Dominant Parkinsonism and Dementia with Pallido-Ponto-Nigral Degeneration to Chromosome 17q21. Human Molecular Genetics, 1996, 5, 151-154.	2.9	120
120	Long-term sequelae of Helicobacter pylori gastritis. Lancet, The, 1995, 345, 1525-1528.	13.7	720
121	Gastric chief cell-specific transcription of the pepsinogen A gene. FEBS Journal, 1993, 213, 1283-1296.	0.2	14
122	Seroconversion for Helicobacter pylori. Lancet, The, 1993, 342, 328-331.	13.7	224
123	<i>Helicobacter pylori</i> Serology in Patients with Gastric Carcinoma. Scandinavian Journal of Gastroenterology, 1993, 28, 433-437.	1.5	61
124	Genetics and Epidemiology May Contribute to Understanding the Pathogenesis of IBD - A New Approach is Now Indicated. Canadian Journal of Gastroenterology & Hepatology, 1993, 7, 71-75.	1.7	8
125	Single base mutations can be unequivocally and rapidly detected by analysis of DNA heteroduplexes, obtained with deletion-mutant instead of wild-type DNA. Nucleic Acids Research, 1992, 20, 6745-6746.	14.5	17
126	Variation in gene copy number and polymorphism of the human salivary amylase isoenzyme system in Caucasians. Human Genetics, 1992, 89, 213-22.	3.8	28

#	Article	IF	CITATIONS
127	High-performance liquid chromatography: purification and chromatographic behaviour of molecular variants of pepsinogen A from human urine. Biomedical Applications, 1991, 571, 47-59.	1.7	3
128	Consequences of Intramolecular Ionic Interactions for the Activation Rate of Human Pepsinogens A and C as Revealed by Molecular Modelling. Advances in Experimental Medicine and Biology, 1991, 306, 101-105.	1.6	1
129	Human pepsinogen A isozymogen patterns in serum and gastric mucosa. Gastroenterology, 1990, 99, 1576-1580.	1.3	7
130	Human pepsinogen C (progastricsin) polymorphism: Evidence for a single locus located at 6p21.1-pter. Genomics, 1989, 4, 137-145.	2.9	39
131	Immunohistochemical localization of pepsinogen A and C containing cells in Barrett's oesophagus. Virchows Archiv A, Pathological Anatomy and Histopathology, 1988, 413, 11-16.	1.4	1
132	Effect of high dose omeprazole on gastric pepsin secretion and serum pepsinogen levels in man. European Journal of Clinical Pharmacology, 1988, 35, 173-176.	1.9	34
133	Discrepancies between gastric mucosal and urinary pepsinogen A patterns andin vitro synthesis and secretion of human pepsinogen. Digestive Diseases and Sciences, 1988, 33, 135-143.	2.3	8
134	RFLP for the human pepsinogen C gene (PGC). Nucleic Acids Research, 1988, 16, 9372-9372.	14.5	13
135	Renal handling of pepsinogens A and C in man. Clinical Science, 1988, 75, 649-654.	4.3	23
136	Enzyme-linked immunosorbent assay and radioimmunoassay of serum pepsinogen A. Scandinavian Journal of Clinical and Laboratory Investigation, 1987, 47, 29-33.	1.2	12
137	Effect of single and repeated doses of oral omeprazole on gastric acid and pepsin secretion and fasting serum gastrin and serum pepsinogen I levels. Digestive Diseases and Sciences, 1986, 31, 561-566.	2.3	53
138	Influence of RP 40749 on basal and meal-stimulated serum-gastrin, serum-pepsinogen I, and gastrin-content of the antral mucosa in duodenal ulcer patients. Digestive Diseases and Sciences, 1985, 30, 617-623.	2.3	8
139	The influence of omeprazole on the synthesis and secretion of pepsinogen in isolated rabbit gastric glands. Biochemical Pharmacology, 1985, 34, 3693-3699.	4.4	10
140	Genetics of urinary pepsinogen: A new hypothesis. Human Genetics, 1984, 65, 385-390.	3.8	45
141	THIRD NORDIC CONFERENCE Pepsinogen and gastric cancer. Clinical Genetics, 1984, 26, 240-241.	2.0	2