Matthew L Becker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9139138/publications.pdf

Version: 2024-02-01

138 5,410 40
papers citations h-index

141 141 7062
all docs docs citations times ranked citing authors

66

g-index

#	Article	IF	CITATIONS
1	Sugar-Based Polymers with Stereochemistry-Dependent Degradability and Mechanical Properties. Journal of the American Chemical Society, 2022, 144, 1243-1250.	13.7	24
2	Arene–perfluoroarene interactions confer enhanced mechanical properties to synthetic nanotubes. Chemical Science, 2022, 13, 2475-2480.	7.4	12
3	Shape Memory Behavior of Biocompatible Polyurethane Stereoelastomers Synthesized ⟨i⟩via⟨ i⟩ Thiol–Yne Michael Addition. Biomacromolecules, 2022, 23, 1205-1213.	5.4	14
4	Reassessing Undergraduate Polymer Chemistry Laboratory Experiments for Virtual Learning Environments. Journal of Chemical Education, 2022, 99, 1877-1889.	2.3	11
5	Ultraâ€Tough Elastomers from Stereochemistryâ€Directed Hydrogen Bonding in Isosorbideâ€Based Polymers. Angewandte Chemie, 2022, 134, .	2.0	0
6	Ultraâ€Tough Elastomers from Stereochemistryâ€Directed Hydrogen Bonding in Isosorbideâ€Based Polymers. Angewandte Chemie - International Edition, 2022, 61, .	13.8	34
7	Gradient versus End-Capped Degradable Polymer Sequence Variations Result in Stiff to Elastic Photochemically 3D-Printed Substrates. Biomacromolecules, 2022, 23, 2106-2115.	5.4	4
8	Degradable, Photochemically Printable Poly(propylene fumarate)-Based ABA Triblock Elastomers. Biomacromolecules, 2022, 23, 2388-2395.	5.4	9
9	Controlled release of etoricoxib from poly(ester urea) films for post-operative pain management. Journal of Controlled Release, 2021, 329, 316-327.	9.9	9
10	Polymeric Materials for Eye Surface and Intraocular Applications. Biomacromolecules, 2021, 22, 223-261.	5.4	20
11	Concomitant control of mechanical properties and degradation in resorbable elastomer-like materials using stereochemistry and stoichiometry for soft tissue engineering. Nature Communications, 2021, 12, 446.	12.8	34
12	Regio-Random Clemmensen Reduction of Biodegradable Polyesters for Photochemically Triggered 3D Printing. Macromolecules, 2021, 54, 1273-1280.	4.8	4
13	Clustering and Hierarchical Organization of 3D Printed Poly(propylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 To	Tf 50 267 T 4.8	Td (fumarate) 14
14	Degradable polymeric vehicles for postoperative pain management. Nature Communications, 2021, 12, 1367.	12.8	30
15	Fabrication of Biomedical Scaffolds Using Biodegradable Polymers. Chemical Reviews, 2021, 121, 11238-11304.	47.7	127
16	Crosslinked Internal Alkyne-Based Stereo Elastomers: Polymers with Tunable Mechanical Properties. Macromolecules, 2021, 54, 4649-4657.	4.8	14
17	<i>Zooming in</i> on Polymer Chemistry and Designing Synthesis of High Sulfur-Content Polymers for Virtual Undergraduate Laboratory Experiment. Journal of Chemical Education, 2021, 98, 2062-2073.	2.3	8
18	Poly(ethylene glycol) Hydrogel Crosslinking Chemistries Identified via Atmospheric Solids Analysis Probe Mass Spectrometry. Macromolecules, 2021, 54, 7754-7764.	4.8	4

#	Article	IF	Citations
19	Introduction: Polymeric Biomaterials. Chemical Reviews, 2021, 121, 10789-10791.	47.7	24
20	Stereochemistry-Controlled Mechanical Properties and Degradation in 3D-Printable Photosets. Journal of the American Chemical Society, 2021, 143, 17510-17516.	13.7	15
21	Continuous Fabrication of Antimicrobial Nanofiber Mats Using Post-Electrospinning Functionalization for Roll-to-Roll Scale-Up. ACS Applied Polymer Materials, 2020, 2, 304-316.	4.4	18
22	Unsaturated Poly(ester-urethanes) with Stereochemically Dependent Thermomechanical Properties. Macromolecules, 2020, 53, 174-181.	4.8	17
23	Underexplored Stereocomplex Polymeric Scaffolds with Improved Thermal and Mechanical Properties. Macromolecules, 2020, 53, 10303-10314.	4.8	19
24	Degradation of Block Copolymer Films Confined in Elastic Media: Molecular Dynamics Simulations. Macromolecules, 2020, 53, 9460-9469.	4.8	0
25	Advancing Toward 3D Printing of Bioresorbable Shape Memory Polymer Stents. Biomacromolecules, 2020, 21, 3957-3965.	5.4	39
26	Zwitterion Surface-Functionalized Thermoplastic Polyurethane for Antifouling Catheter Applications. Biomacromolecules, 2020, 21, 2714-2725.	5.4	31
27	Elastomeric polyamide biomaterials with stereochemically tuneable mechanical properties and shape memory. Nature Communications, 2020, 11, 3250.	12.8	56
28	Solutionâ€Processed Flexible Broadband Photodetectors with Solutionâ€Processed Transparent Polymeric Electrode. Advanced Functional Materials, 2020, 30, 1909487.	14.9	61
29	Amino Acid-Based Poly(ester urea)s as a Matrix for Extended Release of Entecavir. Biomacromolecules, 2020, 21, 946-954.	5.4	8
30	Degradation of Films of Block Copolymers: Molecular Dynamics Simulations. Macromolecules, 2020, 53, 1270-1280.	4.8	5
31	4D Printing of Resorbable Complex Shape-Memory Poly(propylene fumarate) Star Scaffolds. ACS Applied Materials & Star Scaffolds. ACS Applied Materials & Star Scaffolds. ACS	8.0	70
32	Alternating ring-opening copolymerization of epoxides with saturated and unsaturated cyclic anhydrides: reduced viscosity poly(propylene fumarate) oligomers for use in cDLP 3D printing. Polymer Chemistry, 2020, 11, 3313-3321.	3.9	10
33	Antibiotic eluting poly(ester urea) films for control of a model cardiac implantable electronic device infection. Acta Biomaterialia, 2020, 111, 65-79.	8.3	4
34	Cooperative Selfâ€Assembly of Pyridineâ€2,6â€Diimineâ€Linked Macrocycles into Mechanically Robust Nanotubes. Angewandte Chemie - International Edition, 2019, 58, 14708-14714.	13.8	19
35	Zwitterionic amino acid-based Poly(ester urea)s suppress adhesion formation in a rat intra-abdominal cecal abrasion model. Biomaterials, 2019, 221, 119399.	11.4	9
36	Stereochemical enhancement of polymer properties. Nature Reviews Chemistry, 2019, 3, 514-535.	30.2	188

#	Article	IF	Citations
37	Tuning Cooperative Assembly with Bottlebrush Block Co-polymers for Porous Metal Oxide Films Using Solvent Mixtures. Langmuir, 2019, 35, 9572-9583.	3.5	4
38	Poly(propylene fumarate) stars, using architecture to reduce the viscosity of 3D printable resins. Polymer Chemistry, 2019, 10, 4655-4664.	3.9	27
39	Molecular Massâ€Dependent Resorption and Bone Regeneration of 3D Printed PPF Scaffolds in a Criticalâ€Sized Rat Cranial Defect Model. Advanced Healthcare Materials, 2019, 8, e1900646.	7.6	28
40	Optimization of photocrosslinkable resin components and 3D printing process parameters. Acta Biomaterialia, 2019, 97, 154-161.	8.3	43
41	Enhancing Schwann cell migration using concentration gradients of laminin-derived peptides. Biomaterials, 2019, 218, 119335.	11.4	46
42	Modulating Bioglass Concentration in 3D Printed Poly(propylene fumarate) Scaffolds for Post-Printing Functionalization with Bioactive Functional Groups. Biomacromolecules, 2019, 20, 4345-4352.	5.4	17
43	Cooperative Selfâ€Assembly of Pyridineâ€2,6â€Diimineâ€Linked Macrocycles into Mechanically Robust Nanotubes. Angewandte Chemie, 2019, 131, 14850-14856.	2.0	4
44	Photopolymerizable Resins for 3D-Printing Solid-Cured Tissue Engineered Implants. Current Drug Targets, 2019, 20, 823-838.	2.1	30
45	Mechanically tunable, human mesenchymal stem cell viable poly(ethylene glycol)–oxime hydrogels with invariant precursor composition, concentration, and stoichiometry. Materials Today Chemistry, 2019, 11, 244-252.	3.5	11
46	RGD-Modified Nanofibers Enhance Outcomes in Rats after Sciatic Nerve Injury. Journal of Functional Biomaterials, 2019, 10, 24.	4.4	12
47	Poly(propylene fumarate)-based materials: Synthesis, functionalization, properties, device fabrication and biomedical applications. Biomaterials, 2019, 208, 45-71.	11.4	73
48	RGD-Functionalized Nanofibers Increase Early GFAP Expression during Neural Differentiation of Mouse Embryonic Stem Cells. Biomacromolecules, 2019, 20, 1443-1454.	5.4	18
49	3D Printing of Poly(propylene fumarate) Oligomers: Evaluation of Resin Viscosity, Printing Characteristics and Mechanical Properties. Biomacromolecules, 2019, 20, 1699-1708.	5.4	93
50	Postfabrication Tethering of Molecular Gradients on Aligned Nanofibers of Functional Poly(ε-caprolactone)s. Biomacromolecules, 2019, 20, 4494-4501.	5.4	2
51	Preclinical in Vitro and in Vivo Assessment of Linear and Branched <scp>I</scp> -Valine-Based Poly(ester urea)s for Soft Tissue Applications. ACS Biomaterials Science and Engineering, 2018, 4, 1346-1356.	5.2	11
52	Magnesium Catalyzed Polymerization of End Functionalized Poly(propylene maleate) and Poly(propylene fumarate) for 3D Printing of Bioactive Scaffolds. Journal of the American Chemical Society, 2018, 140, 277-284.	13.7	67
53	Antimicrobial and Antifouling Strategies for Polymeric Medical Devices. ACS Macro Letters, 2018, 7, 16-25.	4.8	211
54	Synthesis and 3D Printing of PEG–Poly(propylene fumarate) Diblock and Triblock Copolymer Hydrogels. ACS Macro Letters, 2018, 7, 1254-1260.	4.8	50

#	Article	IF	CITATIONS
55	Nonlinear Mechano-Optical Behavior and Strain-Induced Structural Changes of <scp>l</scp> <i>-</i> Valine-Based Poly(ester urea)s. Macromolecules, 2018, 51, 8114-8126.	4.8	3
56	Post-fabrication QAC-functionalized thermoplastic polyurethane for contact-killing catheter applications. Biomaterials, 2018, 178, 339-350.	11.4	33
57	Ringâ€Opening Copolymerization of Maleic Anhydride with Functional Epoxides: Poly(propylene) Tj ETQq1 1 0.78 Edition, 2018, 57, 12759-12764.	4314 rgBT 13.8	Overlock 26
58	Versatile Ring-Opening Copolymerization and Postprinting Functionalization of Lactone and Poly(propylene fumarate) Block Copolymers: Resorbable Building Blocks for Additive Manufacturing. Macromolecules, 2018, 51, 6202-6208.	4.8	37
59	Amino acid-based Poly(ester urea) copolymer films for hernia-repair applications. Biomaterials, 2018, 182, 44-57.	11.4	21
60	Polymers at the Interface with Biology. Biomacromolecules, 2018, 19, 3151-3162.	5.4	10
61	Ringâ€Opening Copolymerization of Maleic Anhydride with Functional Epoxides: Poly(propylene) Tj ETQq1 1 0.78	4314 rgBT 2.0	Overlock 4
62	Accelerated neural differentiation of mouse embryonic stem cells on aligned GYIGSR-functionalized nanofibers. Acta Biomaterialia, 2018, 75, 129-139.	8.3	43
63	Enhanced Rotator-Cuff Repair Using Platelet-Rich Plasma Adsorbed on Branched Poly(ester urea)s. Biomacromolecules, 2018, 19, 3129-3139.	5.4	10
64	pH-Responsive, Functionalizable Spyrocyclic Polycarbonate: A Versatile Platform for Biocompatible Nanoparticles. Biomacromolecules, 2018, 19, 3427-3434.	5.4	13
65	Role of Hydrogen Bonding on Nonlinear Mechano-Optical Behavior of <scp>I</scp> -Phenylalanine-Based Poly(ester urea)s. Macromolecules, 2017, 50, 1075-1084.	4.8	8
66	Tunable Shape Memory Polymers from α-Amino Acid-Based Poly(ester urea)s. Macromolecules, 2017, 50, 4300-4308.	4.8	27
67	Design and mechanical characterization of solid and highly porous 3D printed poly(propylene) Tj ETQq1 1 0.7843	14.rgBT /C	verlock 10
68	Effect of Chemical and Physical Properties on the In Vitro Degradation of 3D Printed High Resolution Poly(propylene fumarate) Scaffolds. Biomacromolecules, 2017, 18, 1419-1425.	5.4	55
69	High-content image informatics of the structural nuclear protein NuMA parses trajectories for stem/progenitor cell lineages and oncogenic transformation. Experimental Cell Research, 2017, 351, 11-23.	2.6	10
70	Optical High Content Nanoscopy of Epigenetic Marks Decodes Phenotypic Divergence in Stem Cells. Scientific Reports, 2017, 7, 39406.	3.3	5
71	Mass Spectrometry and Ion Mobility Characterization of Bioactive Peptide–Synthetic Polymer Conjugates. Analytical Chemistry, 2017, 89, 1170-1177.	6.5	14
72	Three-Dimensional Printing of Nano Hydroxyapatite/Poly(ester urea) Composite Scaffolds with Enhanced Bioactivity. Biomacromolecules, 2017, 18, 4171-4183.	5.4	56

#	Article	IF	CITATIONS
73	Modification of Poly(propylene fumarate)–Bioglass Composites with Peptide Conjugates to Enhance Bioactivity. Biomacromolecules, 2017, 18, 3168-3177.	5 . 4	24
74	Degradable Adhesives for Surgery and Tissue Engineering. Biomacromolecules, 2017, 18, 3009-3039.	5.4	258
75	Biodegradable Shape Memory Polymers in Medicine. Advanced Healthcare Materials, 2017, 6, 1700694.	7.6	136
76	Sustained Release of Recombinant Human Growth Hormone from Bioresorbable Poly(ester urea) Nanofibers. ACS Macro Letters, 2017, 6, 875-880.	4.8	11
77	Multidimensional mass spectrometry characterization of isomeric biodegradable polyesters. European Journal of Mass Spectrometry, 2017, 23, 402-410.	1.0	7
78	Enhanced osteogenic activity of poly(ester urea) scaffolds using facile post-3D printing peptide functionalization strategies. Biomaterials, 2017, 141, 176-187.	11.4	56
79	Solid state microwave synthesis of highly crystalline ordered mesoporous hausmannite Mn ₃ O ₄ films. CrystEngComm, 2017, 19, 4294-4303.	2.6	14
80	Osteogenic growth peptide and its use as a bioâ€conjugate in regenerative medicine applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, 8, 449-464.	6.1	23
81	Independent Control of Elastomer Properties through Stereocontrolled Synthesis. Angewandte Chemie, 2016, 128, 13270-13274.	2.0	5
82	Multiscale approach for the construction of equilibrated all-atom models of a poly(ethylene) Tj ETQq0 0 0 rgBT /	Overlock 1	10 Tf 50 382 ⁻
		1.0	O
83	Concentration-Dependent <i>h</i> MSC Differentiation on Orthogonal Concentration Gradients of GRGDS and BMP-2 Peptides. Biomacromolecules, 2016, 17, 1486-1495.	5.4	20
83	Concentration-Dependent <i>h</i> MSC Differentiation on Orthogonal Concentration Gradients of GRGDS and BMP-2 Peptides. Biomacromolecules, 2016, 17, 1486-1495. Influence of Sterilization Technologies on Electrospun Poly(ester urea)s for Soft Tissue Repair. Biomacromolecules, 2016, 17, 3363-3374.	1.0	ŭ
	GRGDS and BMP-2 Peptides. Biomacromolecules, 2016, 17, 1486-1495. Influence of Sterilization Technologies on Electrospun Poly(ester urea)s for Soft Tissue Repair.	5.4	20
84	GRGDS and BMP-2 Peptides. Biomacromolecules, 2016, 17, 1486-1495. Influence of Sterilization Technologies on Electrospun Poly(ester urea)s for Soft Tissue Repair. Biomacromolecules, 2016, 17, 3363-3374. α-Amino Acid-Based Poly(Ester urea)s as Multishape Memory Polymers for Biomedical Applications. ACS	5.4	20
84	GRGDS and BMP-2 Peptides. Biomacromolecules, 2016, 17, 1486-1495. Influence of Sterilization Technologies on Electrospun Poly(ester urea)s for Soft Tissue Repair. Biomacromolecules, 2016, 17, 3363-3374. α-Amino Acid-Based Poly(Ester urea)s as Multishape Memory Polymers for Biomedical Applications. ACS Macro Letters, 2016, 5, 1176-1179. Adhesion of Blood Plasma Proteins and Platelet-rich Plasma on	5.4 5.4 4.8	20 8 32
84 85 86	Influence of Sterilization Technologies on Electrospun Poly(ester urea)s for Soft Tissue Repair. Biomacromolecules, 2016, 17, 3363-3374. α-Amino Acid-Based Poly(Ester urea)s as Multishape Memory Polymers for Biomedical Applications. ACS Macro Letters, 2016, 5, 1176-1179. Adhesion of Blood Plasma Proteins and Platelet-rich Plasma on <i><i><i><i><i><scp> </scp></i></i></i></i></i>	5.4 5.4 4.8 5.4	20 8 32 20
84 85 86	Influence of Sterilization Technologies on Electrospun Poly(ester urea)s for Soft Tissue Repair. Biomacromolecules, 2016, 17, 3363-3374. α-Amino Acid-Based Poly(Ester urea)s as Multishape Memory Polymers for Biomedical Applications. ACS Macro Letters, 2016, 5, 1176-1179. Adhesion of Blood Plasma Proteins and Platelet-rich Plasma on <i><i><i><i><i><i><i><i><scp> </scp></i> </i> </i> </i> </i> </i> </i> <td>5.4 5.4 4.8 5.4</td><td>20 8 32 20 20</td></i>	5.4 5.4 4.8 5.4	20 8 32 20 20

#	Article	IF	Citations
91	Evolution in surface morphology during rapid microwave annealing of PS ―b ―PMMA thin films. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1499-1506.	2.1	12
92	Synthesis and Biological Evaluation of Well-Defined Poly(propylene fumarate) Oligomers and Their Use in 3D Printed Scaffolds. Biomacromolecules, 2016, 17, 690-697.	5.4	69
93	Ionomers for Tunable Softening of Thermoplastic Polyurethane. Macromolecules, 2016, 49, 926-934.	4.8	20
94	Control of Mesh Size and Modulus by Kinetically Dependent Crossâ€Linking in Hydrogels. Advanced Materials, 2015, 27, 6283-6288.	21.0	47
95	Rapid (<3 min) microwave synthesis of block copolymer templated ordered mesoporous metal oxide and carbonate films using nitrate–citric acid systems. Chemical Communications, 2015, 51, 4997-5000.	4.1	15
96	<scp> </scp> -Leucine-Based Poly(ester urea)s for Vascular Tissue Engineering. ACS Biomaterials Science and Engineering, 2015, 1, 795-804.	5.2	22
97	Enhanced Schwann Cell Attachment and Alignment Using One-Pot "Dual Click―GRGDS and YIGSR Derivatized Nanofibers. Biomacromolecules, 2015, 16, 357-363.	5.4	47
98	Radiopaque, Iodine Functionalized, Phenylalanine-Based Poly(ester urea)s. Biomacromolecules, 2015, 16, 615-624.	5.4	20
99	Post-Electrospinning "Triclick―Functionalization of Degradable Polymer Nanofibers. ACS Macro Letters, 2015, 4, 207-213.	4.8	48
100	Branched Amino Acid Based Poly(ester urea)s with Tunable Thermal and Water Uptake Properties. Macromolecules, 2015, 48, 2916-2924.	4.8	19
101	OGP Functionalized Phenylalanine-Based Poly(ester urea) for Enhancing Osteoinductive Potential of Human Mesenchymal Stem Cells. Biomacromolecules, 2015, 16, 1358-1371.	5.4	63
102	3D printing of resorbable poly(propylene fumarate) tissue engineering scaffolds. MRS Bulletin, 2015, 40, 119-126.	3.5	69
103	Adhesion Properties of Catechol-Based Biodegradable Amino Acid-Based Poly(ester urea) Copolymers Inspired from Mussel Proteins. Biomacromolecules, 2015, 16, 266-274.	5.4	76
104	Phenylalanine-Based Poly(ester urea): Synthesis, Characterization, and <i>in vitro</i> Degradation. Macromolecules, 2014, 47, 121-129.	4.8	58
105	Enzyme-catalyzed ring-opening polymerization of $\hat{l}\mu$ -caprolactone using alkyne functionalized initiators. Polymer Chemistry, 2014, 5, 1891-1896.	3.9	15
106	Bioactive Surface Modification of Metal Oxides via Catechol-Bearing Modular Peptides: Multivalent-Binding, Surface Retention, and Peptide Bioactivity. Journal of the American Chemical Society, 2014, 136, 16357-16367.	13.7	63
107	"Click―reactions: a versatile toolbox for the synthesis of peptide-conjugates. Chemical Society Reviews, 2014, 43, 7013-7039.	38.1	314
108	Influence of Discrete and Continuous Culture Conditions on Human Mesenchymal Stem Cell Lineage Choice in RGD Concentration Gradient Hydrogels. Biomacromolecules, 2013, 14, 3047-3054.	5.4	17

#	Article	IF	CITATIONS
109	Sequential Triple "Click―Approach toward Polyhedral Oligomeric Silsesquioxane-Based Multiheaded and Multitailed Giant Surfactants. ACS Macro Letters, 2013, 2, 645-650.	4.8	52
110	Maximizing phenotype constraint and extracellular matrix production in primary human chondrocytes using arginine–glycine–aspartate concentration gradient hydrogels. Acta Biomaterialia, 2013, 9, 7420-7428.	8.3	30
111	Resorbable, amino acid-based poly(ester urea)s crosslinked with osteogenic growth peptide with enhanced mechanical properties and bioactivity. Acta Biomaterialia, 2013, 9, 5132-5142.	8.3	69
112	Peptide-Functionalized Oxime Hydrogels with Tunable Mechanical Properties and Gelation Behavior. Biomacromolecules, 2013, 14, 3749-3758.	5.4	102
113	Water-soluble CdTe quantum dots as an anode interlayer for solution-processed near infrared polymer photodetectors. Nanoscale, 2013, 5, 12474.	5.6	24
114	Cascading One-Pot Synthesis of Single-Tailed and Asymmetric Multitailed Giant Surfactants. ACS Macro Letters, 2013, 2, 1026-1032.	4.8	41
115	4-Dibenzocyclooctynol (DIBO) as an initiator for poly(Îμ-caprolactone): copper-free clickable polymer and nanofiber-based scaffolds. Polymer Chemistry, 2013, 4, 2215.	3.9	35
116	Valency-Dependent Affinity of Bioactive Hydroxyapatite-Binding Dendrons. Biomacromolecules, 2013, 14, 3304-3313.	5.4	14
117	Directed differentiation and neurite extension of mouse embryonic stem cell on aligned poly(lactide) nanofibers functionalized with YIGSR peptide. Biomaterials, 2013, 34, 9089-9095.	11.4	130
118	2-D gold nanoparticle arrays from thermally directed self-assembly of peptide-derivatized block copolymers. Soft Matter, 2013, 9, 8023.	2.7	6
119	Concentration dependent neural differentiation and neurite extension of mouse ESC on primary amine-derivatized surfaces. Biomaterials Science, 2013, 1, 537.	5.4	10
120	Primary human chondrocyte extracellular matrix formation and phenotype maintenance using RGD-derivatized PEGDM hydrogels possessing a continuous Young's modulus gradient. Acta Biomaterialia, 2013, 9, 6095-6104.	8.3	62
121	Facile Fabrication of "Dual Click―One- and Two-Dimensional Orthogonal Peptide Concentration Gradients. Biomacromolecules, 2013, 14, 665-671.	5.4	25
122	Postelectrospinning "Click―Modification of Degradable Amino Acid-Based Poly(ester urea) Nanofibers. Macromolecules, 2013, 46, 9515-9525.	4.8	49
123	Cascading "Triclick―Functionalization of Poly(caprolactone) Thin Films Quantified via a Quartz Crystal Microbalance. Biomacromolecules, 2013, 14, 2857-2865.	5.4	21
124	High-Content Imaging-Based Screening of Microenvironment-Induced Changes to Stem Cells. Journal of Biomolecular Screening, 2012, 17, 1151-1162.	2.6	27
125	Strain-Promoted Cross-Linking of PEG-Based Hydrogels via Copper-Free Cycloaddition. ACS Macro Letters, 2012, 1, 1071-1073.	4.8	114
126	ECM Production of Primary Human and Bovine Chondrocytes in Hybrid PEG Hydrogels Containing Type I Collagen and Hyaluronic Acid. Biomacromolecules, 2012, 13, 1625-1631.	5.4	37

#	Article	IF	CITATION
127	Post-Assembly Derivatization of Electrospun Nanofibers via Strain-Promoted Azide Alkyne Cycloaddition. Journal of the American Chemical Society, 2012, 134, 17274-17277.	13.7	60
128	High-fidelity fabrication of Au–polymer Janus nanoparticles using a solution template approach. Soft Matter, 2012, 8, 2965.	2.7	19
129	The Influence of Amino Acid Sequence and Functionality on the Binding Process of Peptides onto Gold Surfaces. Langmuir, 2012, 28, 1408-1417.	3.5	86
130	Synergistic enhancement of human bone marrow stromal cell proliferation and osteogenic differentiation on BMP-2-derived and RGD peptide concentration gradients. Acta Biomaterialia, 2011, 7, 2091-2100.	8.3	110
131	The modulation of dendritic cell integrin binding and activation by RGD-peptide density gradient substrates. Biomaterials, 2010, 31, 7444-7454.	11.4	62
132	The use of immobilized osteogenic growth peptide on gradient substrates synthesized via click chemistry to enhance MC3T3-E1 osteoblast proliferation. Biomaterials, 2010, 31, 1604-1611.	11.4	77
133	A Molecular Dynamics Simulation of the Stabilityâ€Limited Growth Mechanism of Peptideâ€Mediated Goldâ€Nanoparticle Synthesis. Small, 2010, 6, 2242-2245.	10.0	32
134	Inhibitory Effects of a Phage-Derived Peptide on Au Nanocrystal Nucleation and Growth. Langmuir, 2009, 25, 10886-10892.	3.5	17
135	Thin Film Elastic Modulus of Degradable Tyrosine-Derived Polycarbonate Biomaterials and Their Blends. Macromolecules, 2009, 42, 1212-1218.	4.8	15
136	Identification of a Highly Specific Hydroxyapatiteâ€binding Peptide using Phage Display. Advanced Materials, 2008, 20, 1830-1836.	21.0	98
137	Characterization and optimization of RGD-containing silk blends to support osteoblastic differentiation. Biomaterials, 2008, 29, 2556-2563.	11.4	113
138	Influence of Touch-Spun Nanofiber Diameter on Contact Guidance during Peripheral Nerve Repair. Biomacromolecules, 0, , .	5.4	3