Matthew L Becker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9139138/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	"Click―reactions: a versatile toolbox for the synthesis of peptide-conjugates. Chemical Society Reviews, 2014, 43, 7013-7039.	38.1	314
2	Degradable Adhesives for Surgery and Tissue Engineering. Biomacromolecules, 2017, 18, 3009-3039.	5.4	258
3	Antimicrobial and Antifouling Strategies for Polymeric Medical Devices. ACS Macro Letters, 2018, 7, 16-25.	4.8	211
4	Stereochemical enhancement of polymer properties. Nature Reviews Chemistry, 2019, 3, 514-535.	30.2	188
5	Biodegradable Shape Memory Polymers in Medicine. Advanced Healthcare Materials, 2017, 6, 1700694.	7.6	136
6	Directed differentiation and neurite extension of mouse embryonic stem cell on aligned poly(lactide) nanofibers functionalized with YIGSR peptide. Biomaterials, 2013, 34, 9089-9095.	11.4	130
7	Fabrication of Biomedical Scaffolds Using Biodegradable Polymers. Chemical Reviews, 2021, 121, 11238-11304.	47.7	127
8	Strain-Promoted Cross-Linking of PEG-Based Hydrogels via Copper-Free Cycloaddition. ACS Macro Letters, 2012, 1, 1071-1073.	4.8	114
9	Characterization and optimization of RGD-containing silk blends to support osteoblastic differentiation. Biomaterials, 2008, 29, 2556-2563.	11.4	113
10	Synergistic enhancement of human bone marrow stromal cell proliferation and osteogenic differentiation on BMP-2-derived and RGD peptide concentration gradients. Acta Biomaterialia, 2011, 7, 2091-2100.	8.3	110
11	Peptide-Functionalized Oxime Hydrogels with Tunable Mechanical Properties and Gelation Behavior. Biomacromolecules, 2013, 14, 3749-3758.	5.4	102
12	Identification of a Highly Specific Hydroxyapatiteâ€binding Peptide using Phage Display. Advanced Materials, 2008, 20, 1830-1836.	21.0	98
13	3D Printing of Poly(propylene fumarate) Oligomers: Evaluation of Resin Viscosity, Printing Characteristics and Mechanical Properties. Biomacromolecules, 2019, 20, 1699-1708.	5.4	93
14	The Influence of Amino Acid Sequence and Functionality on the Binding Process of Peptides onto Gold Surfaces. Langmuir, 2012, 28, 1408-1417.	3.5	86
15	The use of immobilized osteogenic growth peptide on gradient substrates synthesized via click chemistry to enhance MC3T3-E1 osteoblast proliferation. Biomaterials, 2010, 31, 1604-1611.	11.4	77
16	Adhesion Properties of Catechol-Based Biodegradable Amino Acid-Based Poly(ester urea) Copolymers Inspired from Mussel Proteins. Biomacromolecules, 2015, 16, 266-274.	5.4	76
17	Poly(propylene fumarate)-based materials: Synthesis, functionalization, properties, device fabrication and biomedical applications. Biomaterials, 2019, 208, 45-71.	11.4	73
18	4D Printing of Resorbable Complex Shape-Memory Poly(propylene fumarate) Star Scaffolds. ACS Applied Materials & Interfaces, 2020, 12, 22444-22452.	8.0	70

#	Article	IF	CITATIONS
19	Resorbable, amino acid-based poly(ester urea)s crosslinked with osteogenic growth peptide with enhanced mechanical properties and bioactivity. Acta Biomaterialia, 2013, 9, 5132-5142.	8.3	69
20	3D printing of resorbable poly(propylene fumarate) tissue engineering scaffolds. MRS Bulletin, 2015, 40, 119-126.	3.5	69
21	Synthesis and Biological Evaluation of Well-Defined Poly(propylene fumarate) Oligomers and Their Use in 3D Printed Scaffolds. Biomacromolecules, 2016, 17, 690-697.	5.4	69
22	Magnesium Catalyzed Polymerization of End Functionalized Poly(propylene maleate) and Poly(propylene fumarate) for 3D Printing of Bioactive Scaffolds. Journal of the American Chemical Society, 2018, 140, 277-284.	13.7	67
23	Bioactive Surface Modification of Metal Oxides via Catechol-Bearing Modular Peptides: Multivalent-Binding, Surface Retention, and Peptide Bioactivity. Journal of the American Chemical Society, 2014, 136, 16357-16367.	13.7	63
24	OGP Functionalized Phenylalanine-Based Poly(ester urea) for Enhancing Osteoinductive Potential of Human Mesenchymal Stem Cells. Biomacromolecules, 2015, 16, 1358-1371.	5.4	63
25	The modulation of dendritic cell integrin binding and activation by RGD-peptide density gradient substrates. Biomaterials, 2010, 31, 7444-7454.	11.4	62
26	Primary human chondrocyte extracellular matrix formation and phenotype maintenance using RGD-derivatized PEGDM hydrogels possessing a continuous Young's modulus gradient. Acta Biomaterialia, 2013, 9, 6095-6104.	8.3	62
27	Solutionâ€Processed Flexible Broadband Photodetectors with Solutionâ€Processed Transparent Polymeric Electrode. Advanced Functional Materials, 2020, 30, 1909487.	14.9	61
28	Post-Assembly Derivatization of Electrospun Nanofibers via Strain-Promoted Azide Alkyne Cycloaddition. Journal of the American Chemical Society, 2012, 134, 17274-17277.	13.7	60
29	Phenylalanine-Based Poly(ester urea): Synthesis, Characterization, and <i>in vitro</i> Degradation. Macromolecules, 2014, 47, 121-129.	4.8	58
30	Three-Dimensional Printing of Nano Hydroxyapatite/Poly(ester urea) Composite Scaffolds with Enhanced Bioactivity. Biomacromolecules, 2017, 18, 4171-4183.	5.4	56
31	Enhanced osteogenic activity of poly(ester urea) scaffolds using facile post-3D printing peptide functionalization strategies. Biomaterials, 2017, 141, 176-187.	11.4	56
32	Elastomeric polyamide biomaterials with stereochemically tuneable mechanical properties and shape memory. Nature Communications, 2020, 11, 3250.	12.8	56
33	Effect of Chemical and Physical Properties on the In Vitro Degradation of 3D Printed High Resolution Poly(propylene fumarate) Scaffolds. Biomacromolecules, 2017, 18, 1419-1425.	5.4	55
34	Sequential Triple "Click―Approach toward Polyhedral Oligomeric Silsesquioxane-Based Multiheaded and Multitailed Giant Surfactants. ACS Macro Letters, 2013, 2, 645-650.	4.8	52
35	Synthesis and 3D Printing of PEG–Poly(propylene fumarate) Diblock and Triblock Copolymer Hydrogels. ACS Macro Letters, 2018, 7, 1254-1260.	4.8	50
36	Postelectrospinning "Click―Modification of Degradable Amino Acid-Based Poly(ester urea) Nanofibers. Macromolecules, 2013, 46, 9515-9525.	4.8	49

#	Article	IF	CITATIONS
37	Post-Electrospinning "Triclick―Functionalization of Degradable Polymer Nanofibers. ACS Macro Letters, 2015, 4, 207-213.	4.8	48
38	Control of Mesh Size and Modulus by Kinetically Dependent Cross‣inking in Hydrogels. Advanced Materials, 2015, 27, 6283-6288.	21.0	47
39	Enhanced Schwann Cell Attachment and Alignment Using One-Pot "Dual Click―GRGDS and YIGSR Derivatized Nanofibers. Biomacromolecules, 2015, 16, 357-363.	5.4	47
40	Enhancing Schwann cell migration using concentration gradients of laminin-derived peptides. Biomaterials, 2019, 218, 119335.	11.4	46
41	Independent Control of Elastomer Properties through Stereocontrolled Synthesis. Angewandte Chemie - International Edition, 2016, 55, 13076-13080.	13.8	43
42	Accelerated neural differentiation of mouse embryonic stem cells on aligned GYIGSR-functionalized nanofibers. Acta Biomaterialia, 2018, 75, 129-139.	8.3	43
43	Optimization of photocrosslinkable resin components and 3D printing process parameters. Acta Biomaterialia, 2019, 97, 154-161.	8.3	43
44	Cascading One-Pot Synthesis of Single-Tailed and Asymmetric Multitailed Giant Surfactants. ACS Macro Letters, 2013, 2, 1026-1032.	4.8	41
45	Design and mechanical characterization of solid and highly porous 3D printed poly(propylene) Tj ETQq1 1 0.784	-314 rgBT 4.8	Overlock 10
46	Advancing Toward 3D Printing of Bioresorbable Shape Memory Polymer Stents. Biomacromolecules, 2020, 21, 3957-3965.	5.4	39
47	ECM Production of Primary Human and Bovine Chondrocytes in Hybrid PEG Hydrogels Containing Type I Collagen and Hyaluronic Acid. Biomacromolecules, 2012, 13, 1625-1631.	5.4	37
48	Caddisfly Inspired Phosphorylated Poly(ester urea)-Based Degradable Bone Adhesives. Biomacromolecules, 2016, 17, 3016-3024.	5.4	37
49	Versatile Ring-Opening Copolymerization and Postprinting Functionalization of Lactone and Poly(propylene fumarate) Block Copolymers: Resorbable Building Blocks for Additive Manufacturing. Macromolecules, 2018, 51, 6202-6208.	4.8	37
50	4-Dibenzocyclooctynol (DIBO) as an initiator for poly(Îμ-caprolactone): copper-free clickable polymer and nanofiber-based scaffolds. Polymer Chemistry, 2013, 4, 2215.	3.9	35
51	Concomitant control of mechanical properties and degradation in resorbable elastomer-like materials using stereochemistry and stoichiometry for soft tissue engineering. Nature Communications, 2021, 12, 446.	12.8	34
52	Ultraâ€Tough Elastomers from Stereochemistryâ€Directed Hydrogen Bonding in Isosorbideâ€Based Polymers. Angewandte Chemie - International Edition, 2022, 61, .	13.8	34
53	Post-fabrication QAC-functionalized thermoplastic polyurethane for contact-killing catheter applications. Biomaterials, 2018, 178, 339-350.	11.4	33
54	A Molecular Dynamics Simulation of the Stabilityâ€Limited Growth Mechanism of Peptideâ€Mediated Goldâ€Nanoparticle Synthesis. Small, 2010, 6, 2242-2245.	10.0	32

#	Article	IF	CITATIONS
55	α-Amino Acid-Based Poly(Ester urea)s as Multishape Memory Polymers for Biomedical Applications. ACS Macro Letters, 2016, 5, 1176-1179.	4.8	32
56	Zwitterion Surface-Functionalized Thermoplastic Polyurethane for Antifouling Catheter Applications. Biomacromolecules, 2020, 21, 2714-2725.	5.4	31
57	Maximizing phenotype constraint and extracellular matrix production in primary human chondrocytes using arginine–glycine–aspartate concentration gradient hydrogels. Acta Biomaterialia, 2013, 9, 7420-7428.	8.3	30
58	Photopolymerizable Resins for 3D-Printing Solid-Cured Tissue Engineered Implants. Current Drug Targets, 2019, 20, 823-838.	2.1	30
59	Degradable polymeric vehicles for postoperative pain management. Nature Communications, 2021, 12, 1367.	12.8	30
60	Pilot Mouse Study of 1 mm Inner Diameter (ID) Vascular Graft Using Electrospun Poly(ester urea) Nanofibers. Advanced Healthcare Materials, 2016, 5, 2427-2436.	7.6	29
61	Molecular Massâ€Dependent Resorption and Bone Regeneration of 3D Printed PPF Scaffolds in a Criticalâ€5ized Rat Cranial Defect Model. Advanced Healthcare Materials, 2019, 8, e1900646.	7.6	28
62	High-Content Imaging-Based Screening of Microenvironment-Induced Changes to Stem Cells. Journal of Biomolecular Screening, 2012, 17, 1151-1162.	2.6	27
63	Tunable Shape Memory Polymers from α-Amino Acid-Based Poly(ester urea)s. Macromolecules, 2017, 50, 4300-4308.	4.8	27
64	Poly(propylene fumarate) stars, using architecture to reduce the viscosity of 3D printable resins. Polymer Chemistry, 2019, 10, 4655-4664.	3.9	27
65	Ringâ€Opening Copolymerization of Maleic Anhydride with Functional Epoxides: Poly(propylene) Tj ETQq1 Edition, 2018, 57, 12759-12764.	1 0.784314 rgBT 13.8	/Overlock 26
66	Facile Fabrication of "Dual Click―One- and Two-Dimensional Orthogonal Peptide Concentration Gradients. Biomacromolecules, 2013, 14, 665-671.	5.4	25
67	Water-soluble CdTe quantum dots as an anode interlayer for solution-processed near infrared polymer photodetectors. Nanoscale, 2013, 5, 12474.	5.6	24
68	Modification of Poly(propylene fumarate)–Bioglass Composites with Peptide Conjugates to Enhance Bioactivity. Biomacromolecules, 2017, 18, 3168-3177.	5.4	24
69	Introduction: Polymeric Biomaterials. Chemical Reviews, 2021, 121, 10789-10791.	47.7	24
70	Sugar-Based Polymers with Stereochemistry-Dependent Degradability and Mechanical Properties. Journal of the American Chemical Society, 2022, 144, 1243-1250.	13.7	24
71	Osteogenic growth peptide and its use as a bioâ€conjugate in regenerative medicine applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, 8, 449-464.	6.1	23
72	<scp>l</scp> -Leucine-Based Poly(ester urea)s for Vascular Tissue Engineering. ACS Biomaterials Science and Engineering, 2015, 1, 795-804.	5.2	22

#	Article	IF	CITATIONS
73	Cascading "Triclick―Functionalization of Poly(caprolactone) Thin Films Quantified via a Quartz Crystal Microbalance. Biomacromolecules, 2013, 14, 2857-2865.	5.4	21
74	Amino acid-based Poly(ester urea) copolymer films for hernia-repair applications. Biomaterials, 2018, 182, 44-57.	11.4	21
75	Radiopaque, Iodine Functionalized, Phenylalanine-Based Poly(ester urea)s. Biomacromolecules, 2015, 16, 615-624.	5.4	20
76	Concentration-Dependent <i>h</i> MSC Differentiation on Orthogonal Concentration Gradients of GRGDS and BMP-2 Peptides. Biomacromolecules, 2016, 17, 1486-1495.	5.4	20
77	Adhesion of Blood Plasma Proteins and Platelet-rich Plasma on <i><i><scp>l</scp></i>allowerses and Poly(ester urea). Biomacromolecules, 2016, 17, 3396-3403.</i>	5.4	20
78	Poly(ester urea)-Based Adhesives: Improved Deployment and Adhesion by Incorporation of Poly(propylene glycol) Segments. ACS Applied Materials & Interfaces, 2016, 8, 33423-33429.	8.0	20
79	Ionomers for Tunable Softening of Thermoplastic Polyurethane. Macromolecules, 2016, 49, 926-934.	4.8	20
80	Polymeric Materials for Eye Surface and Intraocular Applications. Biomacromolecules, 2021, 22, 223-261.	5.4	20
81	High-fidelity fabrication of Au–polymer Janus nanoparticles using a solution template approach. Soft Matter, 2012, 8, 2965.	2.7	19
82	Branched Amino Acid Based Poly(ester urea)s with Tunable Thermal and Water Uptake Properties. Macromolecules, 2015, 48, 2916-2924.	4.8	19
83	Cooperative Selfâ€Assembly of Pyridineâ€2,6â€Diimineâ€Linked Macrocycles into Mechanically Robust Nanotubes. Angewandte Chemie - International Edition, 2019, 58, 14708-14714.	13.8	19
84	Underexplored Stereocomplex Polymeric Scaffolds with Improved Thermal and Mechanical Properties. Macromolecules, 2020, 53, 10303-10314.	4.8	19
85	RGD-Functionalized Nanofibers Increase Early GFAP Expression during Neural Differentiation of Mouse Embryonic Stem Cells. Biomacromolecules, 2019, 20, 1443-1454.	5.4	18
86	Continuous Fabrication of Antimicrobial Nanofiber Mats Using Post-Electrospinning Functionalization for Roll-to-Roll Scale-Up. ACS Applied Polymer Materials, 2020, 2, 304-316.	4.4	18
87	Inhibitory Effects of a Phage-Derived Peptide on Au Nanocrystal Nucleation and Growth. Langmuir, 2009, 25, 10886-10892.	3.5	17
88	Influence of Discrete and Continuous Culture Conditions on Human Mesenchymal Stem Cell Lineage Choice in RGD Concentration Gradient Hydrogels. Biomacromolecules, 2013, 14, 3047-3054.	5.4	17
89	Modulating Bioglass Concentration in 3D Printed Poly(propylene fumarate) Scaffolds for Post-Printing Functionalization with Bioactive Functional Groups. Biomacromolecules, 2019, 20, 4345-4352.	5.4	17
90	Unsaturated Poly(ester-urethanes) with Stereochemically Dependent Thermomechanical Properties. Macromolecules, 2020, 53, 174-181.	4.8	17

#	Article	IF	CITATIONS
91	Thin Film Elastic Modulus of Degradable Tyrosine-Derived Polycarbonate Biomaterials and Their Blends. Macromolecules, 2009, 42, 1212-1218.	4.8	15
92	Enzyme-catalyzed ring-opening polymerization of ε-caprolactone using alkyne functionalized initiators. Polymer Chemistry, 2014, 5, 1891-1896.	3.9	15
93	Rapid (<3 min) microwave synthesis of block copolymer templated ordered mesoporous metal oxide and carbonate films using nitrate–citric acid systems. Chemical Communications, 2015, 51, 4997-5000.	4.1	15
94	Stereochemistry-Controlled Mechanical Properties and Degradation in 3D-Printable Photosets. Journal of the American Chemical Society, 2021, 143, 17510-17516.	13.7	15
95	Valency-Dependent Affinity of Bioactive Hydroxyapatite-Binding Dendrons. Biomacromolecules, 2013, 14, 3304-3313.	5.4	14
96	Mass Spectrometry and Ion Mobility Characterization of Bioactive Peptide–Synthetic Polymer Conjugates. Analytical Chemistry, 2017, 89, 1170-1177.	6.5	14
97	Solid state microwave synthesis of highly crystalline ordered mesoporous hausmannite Mn ₃ O ₄ films. CrystEngComm, 2017, 19, 4294-4303.	2.6	14
98	Clustering and Hierarchical Organization of 3D Printed Poly(propylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 46 Macromolecules, 2021, 54, 3458-3468.	7 Td (fum 4.8	arate)- <i>bloc 14</i>
99	Crosslinked Internal Alkyne-Based Stereo Elastomers: Polymers with Tunable Mechanical Properties. Macromolecules, 2021, 54, 4649-4657.	4.8	14
100	Shape Memory Behavior of Biocompatible Polyurethane Stereoelastomers Synthesized <i>via</i> Thiol–Yne Michael Addition. Biomacromolecules, 2022, 23, 1205-1213.	5.4	14
101	pH-Responsive, Functionalizable Spyrocyclic Polycarbonate: A Versatile Platform for Biocompatible Nanoparticles. Biomacromolecules, 2018, 19, 3427-3434.	5.4	13
102	Evolution in surface morphology during rapid microwave annealing of PS ―b ―PMMA thin films. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1499-1506.	2.1	12
103	RGD-Modified Nanofibers Enhance Outcomes in Rats after Sciatic Nerve Injury. Journal of Functional Biomaterials, 2019, 10, 24.	4.4	12
104	Arene–perfluoroarene interactions confer enhanced mechanical properties to synthetic nanotubes. Chemical Science, 2022, 13, 2475-2480.	7.4	12
105	Sustained Release of Recombinant Human Growth Hormone from Bioresorbable Poly(ester urea) Nanofibers. ACS Macro Letters, 2017, 6, 875-880.	4.8	11
106	Preclinical in Vitro and in Vivo Assessment of Linear and Branched <scp>l</scp> -Valine-Based Poly(ester urea)s for Soft Tissue Applications. ACS Biomaterials Science and Engineering, 2018, 4, 1346-1356.	5.2	11
107	Mechanically tunable, human mesenchymal stem cell viable poly(ethylene glycol)–oxime hydrogels with invariant precursor composition, concentration, and stoichiometry. Materials Today Chemistry, 2019, 11, 244-252.	3.5	11
108	Reassessing Undergraduate Polymer Chemistry Laboratory Experiments for Virtual Learning Environments. Journal of Chemical Education, 2022, 99, 1877-1889.	2.3	11

#	Article	IF	CITATIONS
109	Concentration dependent neural differentiation and neurite extension of mouse ESC on primary amine-derivatized surfaces. Biomaterials Science, 2013, 1, 537.	5.4	10
110	High-content image informatics of the structural nuclear protein NuMA parses trajectories for stem/progenitor cell lineages and oncogenic transformation. Experimental Cell Research, 2017, 351, 11-23.	2.6	10
111	Polymers at the Interface with Biology. Biomacromolecules, 2018, 19, 3151-3162.	5.4	10
112	Enhanced Rotator-Cuff Repair Using Platelet-Rich Plasma Adsorbed on Branched Poly(ester urea)s. Biomacromolecules, 2018, 19, 3129-3139.	5.4	10
113	Alternating ring-opening copolymerization of epoxides with saturated and unsaturated cyclic anhydrides: reduced viscosity poly(propylene fumarate) oligomers for use in cDLP 3D printing. Polymer Chemistry, 2020, 11, 3313-3321.	3.9	10
114	Zwitterionic amino acid-based Poly(ester urea)s suppress adhesion formation in a rat intra-abdominal cecal abrasion model. Biomaterials, 2019, 221, 119399.	11.4	9
115	Controlled release of etoricoxib from poly(ester urea) films for post-operative pain management. Journal of Controlled Release, 2021, 329, 316-327.	9.9	9
116	Degradable, Photochemically Printable Poly(propylene fumarate)-Based ABA Triblock Elastomers. Biomacromolecules, 2022, 23, 2388-2395.	5.4	9
117	Influence of Sterilization Technologies on Electrospun Poly(ester urea)s for Soft Tissue Repair. Biomacromolecules, 2016, 17, 3363-3374.	5.4	8
118	Role of Hydrogen Bonding on Nonlinear Mechano-Optical Behavior of <scp>l</scp> -Phenylalanine-Based Poly(ester urea)s. Macromolecules, 2017, 50, 1075-1084.	4.8	8
119	Amino Acid-Based Poly(ester urea)s as a Matrix for Extended Release of Entecavir. Biomacromolecules, 2020, 21, 946-954.	5.4	8
120	<i>Zooming in</i> on Polymer Chemistry and Designing Synthesis of High Sulfur-Content Polymers for Virtual Undergraduate Laboratory Experiment. Journal of Chemical Education, 2021, 98, 2062-2073.	2.3	8
121	Multidimensional mass spectrometry characterization of isomeric biodegradable polyesters. European Journal of Mass Spectrometry, 2017, 23, 402-410.	1.0	7
122	2-D gold nanoparticle arrays from thermally directed self-assembly of peptide-derivatized block copolymers. Soft Matter, 2013, 9, 8023.	2.7	6
123	Multiscale approach for the construction of equilibrated all-atom models of a poly(ethylene) Tj ETQq1 1 0.784314	rgBT /Ove	erlock 10 Tf
124	Independent Control of Elastomer Properties through Stereocontrolled Synthesis. Angewandte Chemie, 2016, 128, 13270-13274.	2.0	5
125	Optical High Content Nanoscopy of Epigenetic Marks Decodes Phenotypic Divergence in Stem Cells. Scientific Reports, 2017, 7, 39406.	3.3	5
126	Degradation of Films of Block Copolymers: Molecular Dynamics Simulations. Macromolecules, 2020, 53, 1270-1280.	4.8	5

#	Article	IF	CITATIONS
127	Ringâ€Opening Copolymerization of Maleic Anhydride with Functional Epoxides: Poly(propylene) Tj ETQq1 1 0.784 12941-12946.	4314 rgBT 2.0	/Overlock 4
128	Tuning Cooperative Assembly with Bottlebrush Block Co-polymers for Porous Metal Oxide Films Using Solvent Mixtures. Langmuir, 2019, 35, 9572-9583.	3.5	4
129	Cooperative Selfâ€Assembly of Pyridineâ€2,6â€Diimineâ€Linked Macrocycles into Mechanically Robust Nanotubes. Angewandte Chemie, 2019, 131, 14850-14856.	2.0	4
130	Regio-Random Clemmensen Reduction of Biodegradable Polyesters for Photochemically Triggered 3D Printing. Macromolecules, 2021, 54, 1273-1280.	4.8	4
131	Poly(ethylene glycol) Hydrogel Crosslinking Chemistries Identified via Atmospheric Solids Analysis Probe Mass Spectrometry. Macromolecules, 2021, 54, 7754-7764.	4.8	4
132	Antibiotic eluting poly(ester urea) films for control of a model cardiac implantable electronic device infection. Acta Biomaterialia, 2020, 111, 65-79.	8.3	4
133	Gradient versus End-Capped Degradable Polymer Sequence Variations Result in Stiff to Elastic Photochemically 3D-Printed Substrates. Biomacromolecules, 2022, 23, 2106-2115.	5.4	4
134	Nonlinear Mechano-Optical Behavior and Strain-Induced Structural Changes of <scp>l</scp> <i>-</i> Valine-Based Poly(ester urea)s. Macromolecules, 2018, 51, 8114-8126.	4.8	3
135	Influence of Touch-Spun Nanofiber Diameter on Contact Guidance during Peripheral Nerve Repair. Biomacromolecules, 0, , .	5.4	3
136	Postfabrication Tethering of Molecular Gradients on Aligned Nanofibers of Functional Poly(ε-caprolactone)s. Biomacromolecules, 2019, 20, 4494-4501.	5.4	2
137	Degradation of Block Copolymer Films Confined in Elastic Media: Molecular Dynamics Simulations. Macromolecules, 2020, 53, 9460-9469.	4.8	0
138	Ultraâ€Tough Elastomers from Stereochemistryâ€Directed Hydrogen Bonding in Isosorbideâ€Based Polymers. Angewandte Chemie, 2022, 134, .	2.0	0