Jennifer K Edwards

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9138936/publications.pdf

Version: 2024-02-01

73 papers

7,662 citations

39 h-index 72 g-index

76 all docs

76 docs citations

76 times ranked 6787 citing authors

#	Article	lF	Citations
1	Impact of the Experimental Parameters on Catalytic Activity When Preparing Polymer Protected Bimetallic Nanoparticle Catalysts on Activated Carbon. ACS Catalysis, 2022, 12, 4440-4454.	11.2	6
2	Highly efficient catalytic production of oximes from ketones using in situ–generated H ₂ O ₂ . Science, 2022, 376, 615-620.	12.6	63
3	The Influence of Reaction Conditions on the Oxidation of Cyclohexane via the In-Situ Production of H2O2. Catalysis Letters, 2021, 151, 164-171.	2.6	16
4	Ambient base-free glycerol oxidation over bimetallic PdFe/SiO2 by in situ generated active oxygen species. Research on Chemical Intermediates, 2021, 47, 303-324.	2.7	6
5	The Selective Oxidation of Cyclohexane via In-situ H2O2 Production Over Supported Pd-based Catalysts. Catalysis Letters, 2021, 151, 2762-2774.	2.6	14
6	A Career in Catalysis: Graham J. Hutchings. ACS Catalysis, 2021, 11, 5916-5933.	11.2	2
7	A residue-free approach to water disinfection using catalytic in situ generation of reactive oxygen species. Nature Catalysis, 2021, 4, 575-585.	34.4	73
8	The direct synthesis of hydrogen peroxide using a combination of a hydrophobic solvent and water. Catalysis Science and Technology, 2020, 10, 8203-8212.	4.1	6
9	The direct synthesis of hydrogen peroxide from H ₂ and O ₂ using Pd–Ni/TiO ₂ catalysts. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20200062.	3.4	18
10	The Direct Synthesis of H ₂ O ₂ Using TSâ€1 Supported Catalysts. ChemCatChem, 2019, 11, 1673-1680.	3.7	42
11	Direct Synthesis of Hydrogen Peroxide Using Cs-Containing Heteropolyacid-Supported Palladium–Copper Catalysts. Catalysis Letters, 2019, 149, 998-1006.	2.6	19
12	The Effects of Dopants on the Cu–ZrO ₂ Catalyzed Hydrogenation of Levulinic Acid. Journal of Physical Chemistry C, 2019, 123, 7879-7888.	3.1	21
13	Silver–palladium catalysts for the direct synthesis of hydrogen peroxide. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170058.	3.4	18
14	One pot microwave synthesis of highly stable AuPd@Pd supported core–shell nanoparticles. Faraday Discussions, 2018, 208, 409-425.	3.2	13
15	Gold as a Catalyst for the Ring Opening of 2,5-Dimethylfuran. Catalysis Letters, 2018, 148, 2109-2116.	2.6	3
16	Platinum Nanoparticle Inclusion into a Carbonized Polymer of Intrinsic Microporosity: Electrochemical Characteristics of a Catalyst for Electroless Hydrogen Peroxide Production. Nanomaterials, 2018, 8, 542.	4.1	8
17	The effect of ring size on the selective carboxylation of cycloalkene oxides. Catalysis Science and Technology, 2017, 7, 1433-1439.	4.1	2
18	Multifunctional supported bimetallic catalysts for a cascade reaction with hydrogen auto transfer: synthesis of 4-phenylbutan-2-ones from 4-methoxybenzyl alcohols. Catalysis Science and Technology, 2017, 7, 1928-1936.	4.1	9

#	Article	lF	CITATIONS
19	The controlled catalytic oxidation of furfural to furoic acid using AuPd/Mg(OH) ₂ . Catalysis Science and Technology, 2017, 7, 5284-5293.	4.1	87
20	Solid Acid Additives as Recoverable Promoters for the Direct Synthesis of Hydrogen Peroxide. Industrial & Engineering Chemistry Research, 2017, 56, 13287-13293.	3.7	26
21	Identification of the catalytically active component of Cu–Zr–O catalyst for the hydrogenation of levulinic acid to γ-valerolactone. Green Chemistry, 2017, 19, 225-236.	9.0	68
22	Bicatalytic Multistep Reactions Enâ€Route to the Oneâ€Pot Total Synthesis of Complex Molecules: Easy Access to Chromene and 1,2â€Dihydroquinoline Derivatives from Simple Substrates. ChemCatChem, 2017, 9, 70-75.	3.7	10
23	Gas phase stabiliser-free production of hydrogen peroxide using supported gold–palladium catalysts. Chemical Science, 2016, 7, 5833-5837.	7.4	16
24	Population and hierarchy of active species in gold iron oxide catalysts for carbon monoxide oxidation. Nature Communications, 2016, 7, 12905.	12.8	62
25	Palladium-tin catalysts for the direct synthesis of H ₂ O ₂ with high selectivity. Science, 2016, 351, 965-968.	12.6	465
26	Depressing the hydrogenation and decomposition reaction in H ₂ O ₂ synthesis by supporting AuPd on oxygen functionalized carbon nanofibers. Catalysis Science and Technology, 2016, 6, 694-697.	4.1	20
27	Base-free oxidation of glucose to gluconic acid using supported gold catalysts. Catalysis Science and Technology, 2016, 6, 107-117.	4.1	53
28	Ruthenium Nanoparticles Supported on Carbon: An Active Catalyst for the Hydrogenation of Lactic Acid to 1,2-Propanediol. ACS Catalysis, 2015, 5, 5047-5059.	11.2	91
29	Supercritical antisolvent precipitation of TiO2 with tailored anatase/rutile composition for applications in redox catalysis and photocatalysis. Applied Catalysis A: General, 2015, 504, 62-73.	4.3	29
30	Advances in the direct synthesis of hydrogen peroxide from hydrogen and oxygen. Catalysis Today, 2015, 248, 3-9.	4.4	189
31	Direct synthesis of hydrogen peroxide using Au–Pd supported and ion-exchanged heteropolyacids precipitated with various metal ions. Catalysis Today, 2015, 248, 10-17.	4.4	36
32	Surface functionalized TiO2 supported Pd catalysts for solvent-free selective oxidation of benzyl alcohol. Catalysis Today, 2015, 250, 218-225.	4.4	45
33	The Direct Synthesis of Hydrogen Peroxide Using Platinumâ€Promoted Gold–Palladium Catalysts. Angewandte Chemie - International Edition, 2014, 53, 2381-2384.	13.8	104
34	Strategies for Designing Supported Gold–Palladium Bimetallic Catalysts for the Direct Synthesis of Hydrogen Peroxide. Accounts of Chemical Research, 2014, 47, 845-854.	15.6	179
35	Oxidation of Benzyl Alcohol using in Situ Generated Hydrogen Peroxide. Organic Process Research and Development, 2014, 18, 1455-1460.	2.7	21
36	The direct synthesis of hydrogen peroxide using platinum promoted gold–palladium catalysts. Catalysis Science and Technology, 2014, 4, 3244-3250.	4.1	23

#	Article	IF	Citations
37	Selective oxidation of benzyl alcohol using in situ generated H2O2 over hierarchical Au–Pd titanium silicalite catalysts. Catalysis Science and Technology, 2013, 3, 2425.	4.1	39
38	Physical mixing of metal acetates: optimisation of catalyst parameters to produce highly active bimetallic catalysts. Catalysis Science and Technology, 2013, 3, 2910.	4.1	10
39	Effect of heat treatment on Au–Pd catalysts synthesized by sol immobilisation for the direct synthesis of hydrogen peroxide and benzyl alcoholoxidation. Catalysis Science and Technology, 2013, 3, 308-317.	4.1	64
40	Effect of acid pre-treatment on AuPd/SiO ₂ catalysts for the direct synthesis of hydrogen peroxide. Catalysis Science and Technology, 2013, 3, 812-818.	4.1	45
41	Switching-off toluene formation in the solvent-free oxidation of benzyl alcohol using supported trimetallic Au–Pd–Pt nanoparticles. Faraday Discussions, 2013, 162, 365.	3.2	65
42	Application of Gold Nanoparticles in Catalysis. Frontiers of Nanoscience, 2012, , 249-293.	0.6	36
43	Gold catalysis: helping create a sustainable future. Applied Petrochemical Research, 2012, 2, 7-14.	1.3	7
44	Direct synthesis of hydrogen peroxide using Au–Pd-exchanged and supported heteropolyacid catalysts at ambient temperature using water as solvent. Green Chemistry, 2012, 14, 170-181.	9.0	62
45	Physical mixing of metal acetates: a simple, scalable method to produce active chloride free bimetallic catalysts. Chemical Science, 2012, 3, 2965.	7.4	38
46	The effect of heat treatment on the performance and structure of carbon-supported Au–Pd catalysts for the direct synthesis of hydrogen peroxide. Journal of Catalysis, 2012, 292, 227-238.	6.2	94
47	Synthesis of Stable Ligand-free Gold–Palladium Nanoparticles Using a Simple Excess Anion Method. ACS Nano, 2012, 6, 6600-6613.	14.6	128
48	Influence of reaction conditions on the direct synthesis of hydrogen peroxide over AuPd/carbon catalysts. Catalysis Science and Technology, 2012, 2, 1908.	4.1	23
49	Understanding the effect of thermal treatments on the structure of CuAu/SiO2 catalysts and their performance in propene oxidation. Catalysis Science and Technology, 2011, 1, 76.	4.1	31
50	Direct synthesis of hydrogen peroxide using ceria-supported gold and palladium catalysts. Catalysis Today, 2011, 178, 47-50.	4.4	18
51	Oxidation of benzyl alcohol using supported gold–palladium nanoparticles. Catalysis Today, 2011, 163, 47-54.	4.4	73
52	Reactivity studies of Au–Pd supported nanoparticles for catalytic applications. Applied Catalysis A: General, 2011, 391, 400-406.	4.3	62
53	Direct Synthesis of Hydrogen Peroxide and Benzyl Alcohol Oxidation Using Auâ^'Pd Catalysts Prepared by Sol Immobilization. Langmuir, 2010, 26, 16568-16577.	3.5	201
54	The effect of catalyst preparation method on the performance of supported Au–Pd catalysts for the direct synthesis of hydrogen peroxide. Green Chemistry, 2010, 12, 915.	9.0	63

#	Article	IF	CITATIONS
55	Effect of the reaction conditions on the performance of Au–Pd/TiO2 catalyst for the direct synthesis of hydrogen peroxide. Physical Chemistry Chemical Physics, 2010, 12, 2488.	2.8	58
56	Effect of Halide and Acid Additives on the Direct Synthesis of Hydrogen Peroxide using Supported Gold–Palladium Catalysts. ChemSusChem, 2009, 2, 575-580.	6.8	68
57	Direct Synthesis of H ₂ O ₂ from H ₂ and O ₂ over Gold, Palladium, and Gold–Palladium Catalysts Supported on Acidâ€Pretreated TiO ₂ . Angewandte Chemie - International Edition, 2009, 48, 8512-8515.	13.8	210
58	Switching Off Hydrogen Peroxide Hydrogenation in the Direct Synthesis Process. Science, 2009, 323, 1037-1041.	12.6	759
59	Palladium and Gold–Palladium Catalysts for the Direct Synthesis of Hydrogen Peroxide. Angewandte Chemie - International Edition, 2008, 47, 9192-9198.	13.8	316
60	Direct synthesis of hydrogen peroxide from H ₂ and O ₂ using supported Au–Pd catalysts. Faraday Discussions, 2008, 138, 225-239.	3.2	207
61	The role of the support in achieving high selectivity in the direct formation of hydrogen peroxide. Green Chemistry, 2008, 10, 1162.	9.0	89
62	Energy dispersive X-ray spectroscopy of bimetallic nanoparticles in an aberration corrected scanning transmission electron microscope. Faraday Discussions, 2008, 138, 337-351.	3.2	109
63	Au–Pd supported nanocrystals prepared by a sol immobilisation technique as catalysts for selective chemical synthesis. Physical Chemistry Chemical Physics, 2008, 10, 1921.	2.8	136
64	Au–Pd supported nanocrystals as catalysts for the direct synthesis of hydrogen peroxide from H ₂ and O ₂ . Green Chemistry, 2008, 10, 388-394.	9.0	131
65	Nanocrystalline gold and gold–palladium as effective catalysts for selective oxidation. Journal of Materials Research, 2007, 22, 831-837.	2.6	22
66	Comparison of supports for the direct synthesis of hydrogen peroxide from H2 and O2 using Au–Pd catalysts. Catalysis Today, 2007, 122, 397-402.	4.4	103
67	Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Au-Pd/TiO2 Catalysts. Science, 2006, 311, 362-365.	12.6	1,976
68	Direct Synthesis of Hydrogen Peroxide from H2and O2Using Al2O3Supported Auâ^'Pd Catalysts. Chemistry of Materials, 2006, 18, 2689-2695.	6.7	183
69	New approaches to designing selective oxidation catalysts: Au/C a versatile catalyst. Topics in Catalysis, 2006, 38, 223-230.	2.8	83
70	Solvent-free oxidation of benzyl alcohol with oxygen using zeolite-supported Au and Au–Pd catalysts. Catalysis Letters, 2006, 110, 7-13.	2.6	98
71	Nanocrystalline gold and gold-palladium as effective catalysts for selective oxidation. Materials Research Society Symposia Proceedings, 2005, 900, 1.	0.1	0
72	Direct synthesis of hydrogen peroxide from H2 and O2 using Au–Pd/Fe2O3 catalysts. Journal of Materials Chemistry, 2005, 15, 4595.	6.7	180

JENNIFER K EDWARDS

#	Article	IF	CITATIONS
73	The Over-Riding Role of Autocatalysis in Allylic Oxidation. Catalysis Letters, 0, , 1.	2.6	O