Johannes Schleusener

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9138641/publications.pdf

Version: 2024-02-01

516710 580821 32 646 16 25 citations g-index h-index papers 33 33 33 420 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Safety and efficacy of combined essential oils for the skin barrier properties: In vitro, ex vivo and clinical studies. International Journal of Cosmetic Science, 2022, 44, 118-130.	2.6	12
2	Application of 233Ânm far-UVC LEDs for eradication of MRSA and MSSA and risk assessment on skin models. Scientific Reports, 2022, 12, 2587.	3.3	23
3	tMCRâ€ALS method for the determination of water concentration profiles in the stratum corneum of untreated and treated skin in vivo. Journal of Raman Spectroscopy, 2022, 53, 1731-1738.	2.5	6
4	Electrohydrodynamic spray applicator for homogenous application and reduced overspray of sunscreen. Skin Research and Technology, 2021, 27, 191-200.	1.6	0
5	In vivo sun protection factor and UVA protection factor determination using (hybrid) diffuse reflectance spectroscopy and a multiâ€lambdaâ€LED light source. Journal of Biophotonics, 2021, 14, e202000348.	2.3	4
6	Blind source separation of molecular components of the human skin (i>in vivo (i>: non-negative matrix factorization of Raman microspectroscopy data. Analyst, The, 2021, 146, 3185-3196.	3.5	28
7	Retaining Skin Barrier Function Properties of the Stratum Corneum with Components of the Natural Moisturizing Factor—A Randomized, Placebo-Controlled Double-Blind In Vivo Study. Molecules, 2021, 26, 1649.	3.8	13
8	Characterization of radical types, penetration profile and distribution pattern of the topically applied photosensitizer THPTS in porcine skin ex vivo. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 162, 50-58.	4.3	2
9	Skin tolerant inactivation of multiresistant pathogens using far-UVC LEDs. Scientific Reports, 2021, 11, 14647.	3.3	37
10	Characterization of Collagen I Fiber Thickness, Density, and Orientation in the Human Skin In Vivo Using Second-Harmonic Generation Imaging. Photonics, 2021, 8, 404.	2.0	9
11	Fiber-based SORS-SERDS system and chemometrics for the diagnostics and therapy monitoring of psoriasis inflammatory disease in vivo. Biomedical Optics Express, 2021, 12, 1123.	2.9	7
12	In vivo Tracking of DNA for Precise Determination of the Stratum Corneum Thickness and Superficial Microbiome Using Confocal Raman Microscopy. Skin Pharmacology and Physiology, 2020, 33, 30-37.	2.5	16
13	A modification for the calculation of water depth profiles in oilâ€treated skin by in vivo confocal Raman microscopy. Journal of Biophotonics, 2020, 13, e201960106.	2.3	15
14	Stratum corneum occlusion induces water transformation towards lower bonding state: a molecular level <i>in vivo</i> study by confocal Raman microspectroscopy. International Journal of Cosmetic Science, 2020, 42, 482-493.	2.6	17
15	The Effectiveness of Glycerol Solutions for Optical Clearing of the Intact Skin as Measured by Confocal Raman Microspectroscopy. Optics and Spectroscopy (English Translation of Optika I) Tj ETQq1 1 0.7843	3 164 6 gBT /	O§erlock 10
16	Melanin distribution from the dermal–epidermal junction to the stratum corneum: non-invasive in vivo assessment by fluorescence and Raman microspectroscopy. Scientific Reports, 2020, 10, 14374.	3.3	30
17	In vivo non-invasive staining-free visualization of dermal mast cells in healthy, allergy and mastocytosis humans using two-photon fluorescence lifetime imaging. Scientific Reports, 2020, 10, 14930.	3.3	21
18	Response to comment by Puppels et al. on "A modification for the calculation of water depth profiles in oilâ€treated skin by in vivo Raman microscopyâ€. Journal of Biophotonics, 2020, 13, e2460.	2.3	5

#	Article	IF	CITATIONS
19	In vivo detection of changes in cutaneous carotenoids after chemotherapy using shifted excitation resonance Raman difference and fluorescence spectroscopy. Skin Research and Technology, 2020, 26, 301-307.	1.6	5
20	Non-invasive Methods for in vivo Determination of the Skin Barrier Function – Advantages of Confocal Raman Microspectroscopy. Izvestiya of Saratov University, New Series: Physics, 2020, 20, 171-177.	0.1	0
21	The nonâ€homogenous distribution and aggregation of carotenoids in the stratum corneum correlates with the organization of intercellular lipids in vivo. Experimental Dermatology, 2019, 28, 1237-1243.	2.9	21
22	Modified normalization method in in vivo stratum corneum analysis using confocal Raman microscopy to compensate nonhomogeneous distribution of keratin. Journal of Raman Spectroscopy, 2019, 50, 945-957.	2.5	25
23	Influence of polyester spacer fabric, cotton, chloroprene rubber, and silicone on microclimatic and morphologic physiologic skin parameters in vivo. Skin Research and Technology, 2019, 25, 389-398.	1.6	7
24	Hydrogen bound water profiles in the skin influenced by optical clearing molecular agentsâ€"Quantitative analysis using confocal Raman microscopy. Journal of Biophotonics, 2019, 12, e201800283.	2.3	48
25	Non-invasive depth profiling of the stratum corneum in vivo using confocal Raman microscopy considering the non-homogeneous distribution of keratin. Biomedical Optics Express, 2019, 10, 3092.	2.9	18
26	Human skin in vivo has a higher skin barrier function than porcine skin ex vivoâ€"comprehensive Raman microscopic study of the stratum corneum. Journal of Biophotonics, 2018, 11, e201700355.	2.3	60
27	Age related depth profiles of human Stratum Corneum barrier-related molecular parameters by confocal Raman microscopy in vivo. Mechanisms of Ageing and Development, 2018, 172, 6-12.	4.6	40
28	Confocal Raman microscopy combined with optical clearing for identification of inks in multicolored tattooed skin <i>in vivo</i> . Analyst, The, 2018, 143, 4990-4999.	3.5	25
29	Depth-dependent autofluorescence photobleaching using 325, 473, 633, and 785Ânm of porcine ear skin <i>ex vivo</i> . Journal of Biomedical Optics, 2017, 22, 091503.	2.6	31
30	In vivo confocal Raman microscopic determination of depth profiles of the stratum corneum lipid organization influenced by application of various oils. Journal of Dermatological Science, 2017, 87, 183-191.	1.9	47
31	Keratin-water-NMF interaction as a three layer model in the human stratum corneum using in vivo confocal Raman microscopy. Scientific Reports, 2017, 7, 15900.	3.3	70
32	Raman imaging of large-area human tissue. , 2017, , .		0