Johannes Schleusener

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9138641/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Keratin-water-NMF interaction as a three layer model in the human stratum corneum using in vivo confocal Raman microscopy. Scientific Reports, 2017, 7, 15900.	3.3	70
2	Human skin in vivo has a higher skin barrier function than porcine skin ex vivo—comprehensive Raman microscopic study of the stratum corneum. Journal of Biophotonics, 2018, 11, e201700355.	2.3	60
3	Hydrogen bound water profiles in the skin influenced by optical clearing molecular agents—Quantitative analysis using confocal Raman microscopy. Journal of Biophotonics, 2019, 12, e201800283.	2.3	48
4	In vivo confocal Raman microscopic determination of depth profiles of the stratum corneum lipid organization influenced by application of various oils. Journal of Dermatological Science, 2017, 87, 183-191.	1.9	47
5	Age related depth profiles of human Stratum Corneum barrier-related molecular parameters by confocal Raman microscopy in vivo. Mechanisms of Ageing and Development, 2018, 172, 6-12.	4.6	40
6	Skin tolerant inactivation of multiresistant pathogens using far-UVC LEDs. Scientific Reports, 2021, 11, 14647.	3.3	37
7	Depth-dependent autofluorescence photobleaching using 325, 473, 633, and 785Ânm of porcine ear skin <i>ex vivo</i> . Journal of Biomedical Optics, 2017, 22, 091503.	2.6	31
8	Melanin distribution from the dermal–epidermal junction to the stratum corneum: non-invasive in vivo assessment by fluorescence and Raman microspectroscopy. Scientific Reports, 2020, 10, 14374.	3.3	30
9	Blind source separation of molecular components of the human skin <i>in vivo</i> : non-negative matrix factorization of Raman microspectroscopy data. Analyst, The, 2021, 146, 3185-3196.	3.5	28
10	Confocal Raman microscopy combined with optical clearing for identification of inks in multicolored tattooed skin <i>in vivo</i> . Analyst, The, 2018, 143, 4990-4999.	3.5	25
11	Modified normalization method in in vivo stratum corneum analysis using confocal Raman microscopy to compensate nonhomogeneous distribution of keratin. Journal of Raman Spectroscopy, 2019, 50, 945-957.	2.5	25
12	Application of 233Ânm far-UVC LEDs for eradication of MRSA and MSSA and risk assessment on skin models. Scientific Reports, 2022, 12, 2587.	3.3	23
13	The nonâ€homogenous distribution and aggregation of carotenoids in the stratum corneum correlates with the organization of intercellular lipids in vivo. Experimental Dermatology, 2019, 28, 1237-1243.	2.9	21
14	In vivo non-invasive staining-free visualization of dermal mast cells in healthy, allergy and mastocytosis humans using two-photon fluorescence lifetime imaging. Scientific Reports, 2020, 10, 14930.	3.3	21
15	Non-invasive depth profiling of the stratum corneum in vivo using confocal Raman microscopy considering the non-homogeneous distribution of keratin. Biomedical Optics Express, 2019, 10, 3092.	2.9	18
16	Stratum corneum occlusion induces water transformation towards lower bonding state: a molecular level <i>in vivo</i> study by confocal Raman microspectroscopy. International Journal of Cosmetic Science, 2020, 42, 482-493.	2.6	17
17	In vivo Tracking of DNA for Precise Determination of the Stratum Corneum Thickness and Superficial Microbiome Using Confocal Raman Microscopy. Skin Pharmacology and Physiology, 2020, 33, 30-37.	2.5	16
18	A modification for the calculation of water depth profiles in oilâ€ŧreated skin by in vivo confocal Raman microscopy. Journal of Biophotonics, 2020, 13, e201960106.	2.3	15

0

#	Article	IF	CITATIONS
19	Retaining Skin Barrier Function Properties of the Stratum Corneum with Components of the Natural Moisturizing Factor—A Randomized, Placebo-Controlled Double-Blind In Vivo Study. Molecules, 2021, 26, 1649.	3.8	13
20	Safety and efficacy of combined essential oils for the skin barrier properties: In vitro, ex vivo and clinical studies. International Journal of Cosmetic Science, 2022, 44, 118-130.	2.6	12
21	Characterization of Collagen I Fiber Thickness, Density, and Orientation in the Human Skin In Vivo Using Second-Harmonic Generation Imaging. Photonics, 2021, 8, 404.	2.0	9
22	Influence of polyester spacer fabric, cotton, chloroprene rubber, and silicone on microclimatic and morphologic physiologic skin parameters in vivo. Skin Research and Technology, 2019, 25, 389-398.	1.6	7
23	Fiber-based SORS-SERDS system and chemometrics for the diagnostics and therapy monitoring of psoriasis inflammatory disease in vivo. Biomedical Optics Express, 2021, 12, 1123.	2.9	7
24	tMCRâ€ALS method for the determination of water concentration profiles in the stratum corneum of untreated and treated skin in vivo. Journal of Raman Spectroscopy, 2022, 53, 1731-1738.	2.5	6
25	Response to comment by Puppels et al. on "A modification for the calculation of water depth profiles in oilâ€ŧreated skin by in vivo Raman microscopy― Journal of Biophotonics, 2020, 13, e2460.	2.3	5
26	In vivo detection of changes in cutaneous carotenoids after chemotherapy using shifted excitation resonance Raman difference and fluorescence spectroscopy. Skin Research and Technology, 2020, 26, 301-307.	1.6	5
27	In vivo sun protection factor and UVA protection factor determination using (hybrid) diffuse reflectance spectroscopy and a multiâ€lambdaâ€LED light source. Journal of Biophotonics, 2021, 14, e202000348.	2.3	4
28	The Effectiveness of Glycerol Solutions for Optical Clearing of the Intact Skin as Measured by Confocal Raman Microspectroscopy. Optics and Spectroscopy (English Translation of Optika I) Tj ETQq0 0 0 rgB1	/Oxerlock	2 1:0 Tf 50 37
29	Characterization of radical types, penetration profile and distribution pattern of the topically applied photosensitizer THPTS in porcine skin ex vivo. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 162, 50-58.	4.3	2

Raman imaging of large-area human tissue. , 2017, , .

31	Electrohydrodynamic spray applicator for homogenous application and reduced overspray of sunscreen. Skin Research and Technology, 2021, 27, 191-200.	1.6	0
32	Non-invasive Methods for in vivo Determination of the Skin Barrier Function – Advantages of Confocal Raman Microspectroscopy. Izvestiya of Saratov University, New Series: Physics, 2020, 20, 171-177.	0.1	0