Michael P Verzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9135721/publications.pdf

Version: 2024-02-01

ex
) 1
91
thors

#	Article	IF	CITATIONS
1	Broadly permissive intestinal chromatin underlies lateral inhibition and cell plasticity. Nature, 2014, 506, 511-515.	27.8	207
2	Paneth Cell Multipotency Induced by Notch Activation following Injury. Cell Stem Cell, 2018, 23, 46-59.e5.	11.1	195
3	Differentiation-Specific Histone Modifications Reveal Dynamic Chromatin Interactions and Partners for the Intestinal Transcription Factor CDX2. Developmental Cell, 2010, 19, 713-726.	7.0	192
4	HNF4 Regulates Fatty Acid Oxidation and Is Required for Renewal of Intestinal Stem Cells in Mice. Gastroenterology, 2020, 158, 985-999.e9.	1.3	115
5	A reinforcing HNF4–SMAD4 feed-forward module stabilizes enterocyte identity. Nature Genetics, 2019, 51, 777-785.	21.4	110
6	Paneth Cell-Derived Lysozyme Defines the Composition of Mucolytic Microbiota and the Inflammatory Tone of the Intestine. Immunity, 2020, 53, 398-416.e8.	14.3	97
7	DNA methylome and transcriptome alterations and cancer prevention by curcumin in colitis-accelerated colon cancer in mice. Carcinogenesis, 2018, 39, 669-680.	2.8	95
8	Essential and Redundant Functions of Caudal Family Proteins in Activating Adult Intestinal Genes. Molecular and Cellular Biology, 2011, 31, 2026-2039.	2.3	94
9	Intestinal Master Transcription Factor CDX2 Controls Chromatin Access for Partner Transcription Factor Binding. Molecular and Cellular Biology, 2013, 33, 281-292.	2.3	76
10	TCF4 and CDX2, major transcription factors for intestinal function, converge on the same <i>cis</i> regulatory regions. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15157-15162.	7.1	73
11	Transcription Factors GATA4 and HNF4A Control Distinct Aspects of Intestinal Homeostasis in Conjunction with Transcription Factor CDX2. Journal of Biological Chemistry, 2015, 290, 1850-1860.	3.4	64
12	SMAD4 Suppresses WNT-Driven Dedifferentiation and Oncogenesis in the Differentiated Gut Epithelium. Cancer Research, 2018, 78, 4878-4890.	0.9	56
13	SIRT7 mediates L1 elements transcriptional repression and their association with the nuclear lamina. Nucleic Acids Research, 2019, 47, 7870-7885.	14.5	55
14	Isothiocyanate-enriched moringa seed extract alleviates ulcerative colitis symptoms in mice. PLoS ONE, 2017, 12, e0184709.	2.5	53
15	Degree of Tissue Differentiation Dictates Susceptibility to BRAF-Driven Colorectal Cancer. Cell Reports, 2017, 21, 3833-3845.	6.4	52
16	YY1 is indispensable for Lgr5 ⁺ intestinal stem cell renewal. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7695-7700.	7.1	50
17	The lineage-specific transcription factor CDX2 navigates dynamic chromatin to control distinct stages of intestine development. Development (Cambridge), 2019, 146, .	2.5	50
18	CDC42 Inhibition Suppresses Progression of Incipient Intestinal Tumors. Cancer Research, 2014, 74, 5480-5492.	0.9	48

#	Article	lF	Citations
19	Rab8a vesicles regulate Wnt ligand delivery and Paneth cell maturation at the intestinal stem cell niche. Development (Cambridge), 2015, 142, 2147-2162.	2.5	48
20	Chromatin Profiling Reveals Regulatory Network Shifts and a Protective Role for Hepatocyte Nuclear Factor 4α during Colitis. Molecular and Cellular Biology, 2014, 34, 3291-3304.	2.3	41
21	Control of Cell Identity by the Nuclear Receptor HNF4 in Organ Pathophysiology. Cells, 2020, 9, 2185.	4.1	40
22	Vitamin D and the intestine: Review and update. Journal of Steroid Biochemistry and Molecular Biology, 2020, 196, 105501.	2.5	37
23	Enhancer, transcriptional, and cell fate plasticity precedes intestinal determination during endoderm development. Genes and Development, 2018, 32, 1430-1442.	5.9	34
24	Mechanisms of colitis-accelerated colon carcinogenesis and its prevention with the combination of aspirin and curcumin: Transcriptomic analysis using RNA-seq. Biochemical Pharmacology, 2017, 135, 22-34.	4.4	32
25	SATB2 preserves colon stem cell identity and mediates ileum-colon conversion via enhancer remodeling. Cell Stem Cell, 2022, 29, 101-115.e10.	11.1	31
26	Wnt signaling in gut organogenesis. Organogenesis, 2008, 4, 87-91.	1.2	27
27	Recycling Endosomes in Mature Epithelia Restrain Tumorigenic Signaling. Cancer Research, 2019, 79, 4099-4112.	0.9	26
28	The nuclear receptor HNF4 drives a brush border gene program conserved across murine intestine, kidney, and embryonic yolk sac. Nature Communications, 2021, 12, 2886.	12.8	24
29	TFAM is required for maturation of the fetal and adult intestinal epithelium. Developmental Biology, 2018, 439, 92-101.	2.0	23
30	Moringa isothiocyanate-1 regulates Nrf2 and NF- \hat{l}^2 B pathway in response to LPS-driven sepsis and inflammation. PLoS ONE, 2021, 16, e0248691.	2.5	23
31	LGR4 and LGR5 Function Redundantly During Human Endoderm Differentiation. Cellular and Molecular Gastroenterology and Hepatology, 2016, 2, 648-662.e8.	4. 5	22
32	A YY1-dependent increase in aerobic metabolism is indispensable for intestinal organogenesis. Development (Cambridge), 2016, 143, 3711-3722.	2.5	22
33	HNF4 factors control chromatin accessibility and are redundantly required for maturation of the fetal intestine. Development (Cambridge), 2019, 146, .	2.5	22
34	LIF is essential for ISC function and protects against radiation-induced gastrointestinal syndrome. Cell Death and Disease, 2020, 11, 588.	6. 3	22
35	Epigenetic alterations in TRAMP mice: epigenome DNA methylation profiling using MeDIP-seq. Cell and Bioscience, 2018, 8, 3.	4.8	21
36	Genome-wide analysis of DNA methylation in UVB- and DMBA/TPA-induced mouse skin cancer models. Life Sciences, 2014, 113, 45-54.	4.3	20

#	Article	IF	CITATIONS
37	Analysis of 1,25-Dihydroxyvitamin D ₃ Genomic Action Reveals Calcium-Regulating and Calcium-Independent Effects in Mouse Intestine and Human Enteroids. Molecular and Cellular Biology, 2021, 41, .	2.3	18
38	Elevating EGFR-MAPK program by a nonconventional Cdc42 enhances intestinal epithelial survival and regeneration. JCI Insight, 2020, 5, .	5.0	18
39	SMAD family member 3 (SMAD3) and SMAD4 repress HIF2α-dependent iron-regulatory genes. Journal of Biological Chemistry, 2019, 294, 3974-3986.	3.4	17
40	Drivers of transcriptional variance in human intestinal epithelial organoids. Physiological Genomics, 2021, 53, 486-508.	2.3	17
41	Three-dimensional interactions between enhancers and promoters during intestinal differentiation depend upon HNF4. Cell Reports, 2021, 34, 108679.	6.4	15
42	CDX2 upregulates SLC26A3 gene expression in intestinal epithelial cells. American Journal of Physiology - Renal Physiology, 2017, 313, G256-G264.	3.4	15
43	Epigenetic regulation of intestinal stem cell differentiation. American Journal of Physiology - Renal Physiology, 2020, 319, G189-G196.	3.4	11
44	Association of aberrant DNA methylation in Apcmin/+ mice with the epithelial-mesenchymal transition and Wnt/ \hat{l}^2 -catenin pathways: genome-wide analysis using MeDIP-seq. Cell and Bioscience, 2015, 5, 24.	4.8	10
45	Structure-activity relationships of 1,4-bis(arylsulfonamido)-benzene or naphthalene-N,N′-diacetic acids with varying C2-substituents as inhibitors of Keap1-Nrf2 protein-protein interaction. European Journal of Medicinal Chemistry, 2022, 237, 114380.	5. 5	10
46	SMAD4 is critical in suppression of BRAF-V600E serrated tumorigenesis. Oncogene, 2021, 40, 6034-6048.	5.9	9
47	FILIP1L Loss Is a Driver of Aggressive Mucinous Colorectal Adenocarcinoma and Mediates Cytokinesis Defects through PFDN1. Cancer Research, 2021, 81, 5523-5539.	0.9	9
48	Colonic healing requires Wnt produced by epithelium as well as Tagln+ and Acta2+ stromal cells. Development (Cambridge), 2022, 149, .	2.5	9
49	Regulatory domains controlling high intestinal vitamin D receptor gene expression are conserved in mouse and human. Journal of Biological Chemistry, 2022, 298, 101616.	3.4	8
50	Autophagy in PDGFRα+ mesenchymal cells is essential for intestinal stem cell survival. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2202016119.	7.1	8
51	LIN28B induces a differentiation program through CDX2 in colon cancer. JCI Insight, 2021, 6, .	5.0	7
52	Optical High Content Nanoscopy of Epigenetic Marks Decodes Phenotypic Divergence in Stem Cells. Scientific Reports, 2017, 7, 39406.	3.3	5
53	Singling Out Intestinal Epithelial Stem Cells. Gastroenterology, 2016, 151, 228-231.	1.3	2
54	Requirement of Bccip for the Regeneration of Intestinal Progenitors. American Journal of Pathology, 2021, 191, 66-78.	3.8	2

#	Article	IF	CITATIONS
55	Erratum for Verzi et al., Intestinal Master Transcription Factor CDX2 Controls Chromatin Access for Partner Transcription Factor Binding. Molecular and Cellular Biology, 2015, 35, 496-496.	2.3	0