Suhendan Ekmekcioglu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9134413/publications.pdf

Version: 2024-02-01

81 papers

6,514 citations

33 h-index 56 g-index

87 all docs 87 docs citations

87 times ranked 14138 citing authors

#	Article	IF	CITATIONS
1	Interplay between soluble CD74 and macrophage-migration inhibitory factor drives tumor growth and influences patient survival in melanoma. Cell Death and Disease, 2022, 13, 117.	6.3	21
2	Interleukin-6 blockade abrogates immunotherapy toxicity and promotes tumor immunity. Cancer Cell, 2022, 40, 509-523.e6.	16.8	115
3	iNOS Associates With Poor Survival in Melanoma: A Role for Nitric Oxide in the PI3K-AKT Pathway Stimulation and PTEN S-Nitrosylation. Frontiers in Oncology, 2021, 11, 631766.	2.8	10
4	The efficacy of antiâ€programmed cell death protein 1 therapy among patients with metastatic acral and metastatic mucosal melanoma. Cancer Medicine, 2021, 10, 2293-2299.	2.8	15
5	Molecular Targeting of HuR Oncoprotein Suppresses MITF and Induces Apoptosis in Melanoma Cells. Cancers, 2021, 13, 166.	3.7	12
6	The Expression of CD74-Regulated Inflammatory Markers in Stage IV Melanoma: Risk of CNS Metastasis and Patient Survival. Cancers, 2020, 12, 3754.	3.7	3
7	Arginine Metabolism Regulates Nitric Oxide Production in Melanoma Tumor Microenvironment to Provide Survival Advantage to Tumor Cells. , 2019, , 113-122.		0
8	Mitochondrial dynamic alterations regulate melanoma cell progression. Journal of Cellular Biochemistry, 2019, 120, 2098-2108.	2.6	19
9	The COX2 Effector Microsomal PGE2 Synthase 1 is a Regulator of Immunosuppression in Cutaneous Melanoma. Clinical Cancer Research, 2019, 25, 1650-1663.	7.0	43
10	High-Throughput Architecture for Discovering Combination Cancer Therapeutics. JCO Clinical Cancer Informatics, 2018, 2, 1-12.	2.1	9
11	Editorial: Targeting Metabolism in Cancer Immunotherapy. Frontiers in Immunology, 2018, 9, 2029.	4.8	5
12	Impact of l-Arginine Metabolism on Immune Response and Anticancer Immunotherapy. Frontiers in Oncology, 2018, 8, 67.	2.8	105
13	Targeting iNOS to increase efficacy of immunotherapies. Human Vaccines and Immunotherapeutics, 2017, 13, 1105-1108.	3.3	49
14	Role of Cyclooxygenase-2 Pathway in Creating an Immunosuppressive Microenvironment and in Initiation and Progression of Wilms' Tumor. Neoplasia, 2017, 19, 237-249.	5.3	38
15	Case of squamous cell carcinoma showing delayed metastasis and histologically exhibiting alterations of the surrounding immune cell populations along with the tumor invasion: Expression of monocyte chemotactic proteinâ€1 in deeply invaded tumor cells and interleukinâ€6 in surrounding histiocytes, lournal of Dermatology, 2017, 44, 346-348.	1.2	0
16	Cervical Cancer Neoantigen Landscape and Immune Activity is Associated with Human Papillomavirus Master Regulators. Frontiers in Immunology, 2017, 8, 689.	4.8	55
17	The neoantigen landscape and immune regulators in cervical cancer Journal of Clinical Oncology, 2017, 35, 5528-5528.	1.6	2
18	Abstract 3967: High microsomal PGE2synthase-1 levels associate with low CD8 T cells and poorer melanoma patient survival., 2017,,.		0

#	Article	IF	CITATIONS
19	Microsomal <scp>PGE</scp> 2 synthaseâ€1 regulates melanoma cell survival and associates with melanoma disease progression. Pigment Cell and Melanoma Research, 2016, 29, 297-308.	3.3	22
20	Hypoxia-Driven Mechanism of Vemurafenib Resistance in Melanoma. Molecular Cancer Therapeutics, 2016, 15, 2442-2454.	4.1	47
21	Exploiting the neoantigen landscape for immunotherapy of pancreatic ductal adenocarcinoma. Scientific Reports, 2016, 6, 35848.	3.3	127
22	Inflammatory Marker Testing Identifies CD74 Expression in Melanoma Tumor Cells, and Its Expression Associates with Favorable Survival for Stage III Melanoma. Clinical Cancer Research, 2016, 22, 3016-3024.	7.0	39
23	Abstract 2285: Microsomal PGE2 synthase-1 regulates melanoma cell survival and associates with melanoma disease progression. , 2016, , .		O
24	Hematopoietic Growth Factors and Cytokines., 2015,, 789-808.e4.		2
25	Cell Surface CD74–MIF Interactions Drive Melanoma Survival in Response to Interferon-γ. Journal of Investigative Dermatology, 2015, 135, 2775-2784.	0.7	64
26	Inflammatory IL- $1\hat{l}^2$ -driven JNK activation in stage III melanoma. Pigment Cell and Melanoma Research, 2015, 28, 236-239.	3.3	6
27	Dual Roles of RNF2 in Melanoma Progression. Cancer Discovery, 2015, 5, 1314-1327.	9.4	57
28	Developing an Irreversible Inhibitor of Human DDAHâ€1, an Enzyme Upregulated in Melanoma. ChemMedChem, 2014, 9, 792-797.	3.2	23
29	Dual inhibition of the vascular endothelial growth factor pathway: A phase 1 trial evaluating bevacizumab and AZD2171 (cediranib) in patients with advanced solid tumors. Cancer, 2014, 120, 2164-2173.	4.1	27
30	Characterization of the Inflammatory Microenvironment and Identification of Potential Therapeutic Targets in Wilms Tumors. Translational Oncology, 2014, 7, 484-492.	3.7	42
31	Inducible Nitric Oxide Synthase Drives mTOR Pathway Activation and Proliferation of Human Melanoma by Reversible Nitrosylation of TSC2. Cancer Research, 2014, 74, 1067-1078.	0.9	86
32	Predictive immune biomarker signatures in the tumor microenvironment of melanoma metastases associated with tumor-infiltrating lymphocyte (TIL) therapy. , 2014, 2, .		4
33	Abstract 4200: Interaction between mPGES-1 and iNOS promotes human melanoma progression. , 2014, , .		O
34	Arginine deprivation therapy for malignant melanoma. Clinical Pharmacology: Advances and Applications, 2013, 5, 11.	1.2	23
35	The TWEAK Receptor Fn14 Is a Therapeutic Target in Melanoma: Immunotoxins Targeting Fn14 Receptor for Malignant Melanoma Treatment. Journal of Investigative Dermatology, 2013, 133, 1052-1062.	0.7	49
36	Identification of unique sensitizing targets for antiâ€inflammatory <scp>CDDO </scp> † <scp>M </scp> e in metastatic melanoma by a largeâ€scale synthetic lethal <scp>RNA </scp> i screening. Pigment Cell and Melanoma Research, 2013, 26, 97-112.	3.3	20

#	Article	IF	Citations
37	Identification of predictive biomarker signatures in melanoma tumors associated with response to tumor-infiltrating lymphocyte (TIL) therapy. , 2013, $1,.$		O
38	Hypoxia-Driven Bypass Mechanism of Innate Resistance to Vemurafenib in Melanoma. Free Radical Biology and Medicine, 2013, 65, S24.	2.9	0
39	Molecular Pathways: Inflammation-Associated Nitric-Oxide Production as a Cancer-Supporting Redox Mechanism and a Potential Therapeutic Target. Clinical Cancer Research, 2013, 19, 5557-5563.	7.0	72
40	Abstract 2936: Induction of hypoxia in 3D human melanoma spheroids leads to c-Met activation and resistance to Vemurafenib , 2013 , , .		1
41	Abstract C231: Novel, fully-human GrB-containing constructs targeting the Fn14 receptor for TWEAK on solid tumor cells , 2013, , .		O
42	Oncogenic BRAF(V600E) Promotes Stromal Cell-Mediated Immunosuppression Via Induction of Interleukin-1 in Melanoma. Clinical Cancer Research, 2012, 18, 5329-5340.	7.0	266
43	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
44	The role of melanoma tumorâ€derived nitric oxide in the tumor inflammatory microenvironment: Its impact on the chemokine expression profile, including suppression of CXCL10. International Journal of Cancer, 2012, 131, 891-901.	5.1	37
45	Association of activated câ€Met with <i>NRAS</i> â€mutated human melanomas. International Journal of Cancer, 2012, 131, E56-65.	5.1	33
46	Abstract 3866: TWEAK receptor (Fn14) is a novel target in melanoma: Characterization of unique targeted therapeutics. , 2012 , , .		0
47	Abstract 1833: A large-scale synthetic lethal RNAi screening identifies unique sensitizing targets for anti-inflammatory CDDO-Me in metastatic melanoma. , 2012 , , .		O
48	IL-24 gene transfer sensitizes melanoma cells to erlotinib through modulation of the Apaf-1 and Akt signaling pathways. Melanoma Research, 2011, 21, 44-56.	1.2	18
49	Clinical Correlates of <i>NRAS</i> and <i>BRAF</i> Mutations in Primary Human Melanoma. Clinical Cancer Research, 2011, 17, 229-235.	7.0	237
50	Constitutive Aberrant Endogenous Interleukin-1 Facilitates Inflammation and Growth in Human Melanoma. Molecular Cancer Research, 2011, 9, 1537-1550.	3.4	77
51	Zyflamend Mediates Therapeutic Induction of Autophagy to Apoptosis in Melanoma Cells. Nutrition and Cancer, 2011, 63, 940-949.	2.0	13
52	Abstract 401: Inducible nitric oxide synthase suppresses the expression of CXCL10 and hence leads to the poor outcome of Stage III malignant melanoma., 2011 ,,.		0
53	Abstract 5051: Aberrant endogenous expression of IL-1 promote inflammation and growth in human melanoma. , $2011, \ldots$		O
54	Abstract 1766: Development of single chain immunotoxins targeting the fibroblast growth factor-inducible 14 (Fn14) receptor on solid tumor cells. , 2011 , , .		0

#	Article	IF	Citations
55	Targeted Inhibition of Inducible Nitric Oxide Synthase Inhibits Growth of Human Melanoma <i>In vivo</i> and Synergizes with Chemotherapy. Clinical Cancer Research, 2010, 16, 1834-1844.	7.0	115
56	Prognostic Significance of iNOS in Human Melanoma. , 2010, , 293-307.		0
57	Interleukin-24 Gene Therapy for Melanoma. , 2010, , 181-202.		O
58	Abstract 5456: Preferential targeting of N-Ras mutant and other wild type B-Raf human melanoma cells with c-Met inhibitor: a preclinical promise. , 2010, , .		0
59	Abstract 2527: Potent, highly selective peptidomimetic prodrugs targeting the SH2 domain of Stat3 decrease vasculogenic mimicry, invasion, and anchorage independent growth of cancer cells., 2010,,.		O
60	Abstract 2564: High-throughput siRNA library screen for discovery and identification of new melanoma therapeutic targets in combination with antioxidant pretreatment. , 2010, , .		0
61	Abstract 1175: PCR array-based gene expression profiling identifies CD70 and CD74 as molecular markers and potential therapeutic targets for human melanoma. , 2010 , , .		O
62	Abstract 4506: Elevated expression of IL-1 induces iNOS/NO production and inhibits IL-1Ra synthesis leading to progression of metastatic melanoma. , 2010, , .		0
63	Constitutive intracellular production of iNOS and NO in human melanoma: possible role in regulation of growth and resistance to apoptosis. Nitric Oxide - Biology and Chemistry, 2008, 19, 133-137.	2.7	71
64	Killing of human melanoma cells induced by activation of class I interferon-regulated signaling pathways via MDA-7/IL-24. Cytokine, 2008, 43, 34-44.	3.2	31
65	Interleukin-24 overcomes temozolomide resistance and enhances cell death by down-regulation of <i>O</i> 6-methylguanine-DNA methyltransferase in human melanoma cells. Molecular Cancer Therapeutics, 2008, 7, 3842-3851.	4.1	49
66	Changes in pERK1/2 and pAKT expression in melanoma lesions after imatinib treatment. Melanoma Research, 2008, 18 , $241-245$.	1.2	6
67	Hematopoietic Growth Factors and Cytokines. , 2008, , 605-619.		1
68	Human interleukin 24 (MDA-7/IL-24) protein kills breast cancer cells via the IL-20 receptor and is antagonized by IL-10. Cancer Immunology, Immunotherapy, 2006, 56, 205-215.	4.2	51
69	Tumor iNOS predicts poor survival for stage III melanoma patients. International Journal of Cancer, 2006, 119, 861-866.	5.1	128
70	Implications of tissue transglutaminase expression in malignant melanoma. Molecular Cancer Therapeutics, 2006, 5, 1493-1503.	4.1	97
71	771. Human mda-7/Interleukin 24 (IL-24) Protein Kills Breast Cancer Cells Via the IL-20 Receptor and Is Antagonized by IL-10. Molecular Therapy, 2006, 13, S298.	8.2	O
72	Soluble Human MDA-7/IL-24: Characterization of the Molecular Form(s) Inhibiting Tumor Growth and Stimulating Monocytes. Journal of Interferon and Cytokine Research, 2006, 26, 877-886.	1.2	18

#	Article	IF	CITATIONS
73	NO News is not Necessarily Good News in Cancer. Current Cancer Drug Targets, 2005, 5, 103-115.	1.6	69
74	Intratumoral Injection of INGN 241, a Nonreplicating Adenovector Expressing the Melanoma-Differentiation Associated Gene-7 (mda-7/IL24): Biologic Outcome in Advanced Cancer Patients. Molecular Therapy, 2005, 11, 160-172.	8.2	190
75	Bystander activity of Ad-mda7: Human MDA-7 protein kills melanoma cells via an IL-20 receptor-dependent but STAT3-independent mechanism. Molecular Therapy, 2004, 10, 1085-1095.	8.2	96
76	MDA-7/IL-24 is a unique cytokine–tumor suppressor in the IL-10 Family. International Immunopharmacology, 2004, 4, 649-667.	3.8	127
77	Inhibition of nuclear factor- \hat{I}^2 B and nitric oxide by curcumin induces G2/M cell cycle arrest and apoptosis in human melanoma cells. Melanoma Research, 2004, 14, 165-171.	1.2	135
78	Negative association of melanoma differentiation-associated gene (mda-7) and inducible nitric oxide synthase (iNOS) in human melanoma: MDA-7 regulates iNOS expression in melanoma cells. Molecular Cancer Therapeutics, 2003, 2, 9-17.	4.1	58
79	Loss of MDA-7 Expression With Progression of Melanoma. Journal of Clinical Oncology, 2002, 20, 1069-1074.	1.6	123
80	Down-regulated melanoma differentiation associated gene (mda-7) expression in human melanomas. International Journal of Cancer, 2001, 94, 54-59.	5.1	119
81	Interleukin-6 Blockade Abrogates Immunotherapy Toxicity and Promotes Tumor Immunity. SSRN Electronic Journal, 0, , .	0.4	0