Roger Abounader

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9132673/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MicroRNA 3928 Suppresses Glioblastoma through Downregulation of Several Oncogenes and Upregulation of p53. International Journal of Molecular Sciences, 2022, 23, 3930.	4.1	8
2	Transcribed Ultraconserved Regions in Cancer. Cells, 2022, 11, 1684.	4.1	6
3	MicroRNAs: Key Regulators in Lung Cancer. MicroRNA (Shariqah, United Arab Emirates), 2021, 10, 109-122.	1.2	6
4	A new class of radiosensitizers for glioblastoma. Oncotarget, 2021, 12, 1199-1200.	1.8	0
5	The blood-brain barrier limits the therapeutic efficacy of antibody-drug conjugates in glioblastoma. Neuro-Oncology, 2021, 23, 1993-1994.	1.2	4
6	The tumor-suppressive long noncoding RNA DRAIC inhibits protein translation and induces autophagy by activating AMPK. Journal of Cell Science, 2021, 134, .	2.0	18
7	A cytoskeleton regulator AVIL drives tumorigenesis in glioblastoma. Nature Communications, 2020, 11, 3457.	12.8	35
8	HGF/MET Signaling in Malignant Brain Tumors. International Journal of Molecular Sciences, 2020, 21, 7546.	4.1	21
9	Activities of Some Medicinal Plants on the Proliferation and Invasion of Brain Tumor Cell Lines. Advances in Pharmacological and Pharmaceutical Sciences, 2020, 2020, 1-7.	1.3	6
10	Gene expression in mouse muscle over time after nickel pellet implantation. Metallomics, 2020, 12, 528-538.	2.4	5
11	CSIG-01. IDENTIFICATION OF PATHOGENESIS-RELEVANT microRNAs IN BRAIN METASTASIS. Neuro-Oncology, 2020, 22, ii27-ii27.	1.2	0
12	MicroRNA-29a inhibits glioblastoma stem cells and tumor growth by regulating the PDGF pathway. Journal of Neuro-Oncology, 2019, 145, 23-34.	2.9	33
13	Mitochondrial NIX Promotes Tumor Survival in the Hypoxic Niche of Glioblastoma. Cancer Research, 2019, 79, 5218-5232.	0.9	57
14	Ethanol Extract of <i> Securidaca longipedunculata</i> Induces Apoptosis in Brain Tumor (U87) Cells. BioMed Research International, 2019, 2019, 1-5.	1.9	11
15	Discovery and Therapeutic Exploitation of Mechanisms of Resistance to MET Inhibitors in Glioblastoma. Clinical Cancer Research, 2019, 25, 663-673.	7.0	35
16	A new practical and versatile mouse model of proneural glioblastoma. Neuro-Oncology, 2018, 20, 299-301.	1.2	2
17	<i>p53</i> and <i>NF 1</i> loss plays distinct but complementary roles in glioma initiation and progression. Glia, 2018, 66, 999-1015.	4.9	19
18	Targeting the mesenchymal subtype in glioblastoma and other cancers via inhibition of diacylglycerol kinase alpha. Neuro-Oncology, 2018, 20, 192-202.	1.2	52

#	Article	IF	CITATIONS
19	Myt1 and Myt1l transcription factors limit proliferation in GBM cells by repressing YAP1 expression. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2018, 1861, 983-995.	1.9	21
20	The p53 Pathway in Glioblastoma. Cancers, 2018, 10, 297.	3.7	232
21	Combined c-Met/Trk Inhibition Overcomes Resistance to CDK4/6 Inhibitors in Glioblastoma. Cancer Research, 2018, 78, 4360-4369.	0.9	46
22	Targetable T-type Calcium Channels Drive Glioblastoma. Cancer Research, 2017, 77, 3479-3490.	0.9	79
23	Combined CDK4/6 and mTOR Inhibition Is Synergistic against Glioblastoma via Multiple Mechanisms. Clinical Cancer Research, 2017, 23, 6958-6968.	7.0	74
24	Role and Therapeutic Targeting of the HGF/MET Pathway in Glioblastoma. Cancers, 2017, 9, 87.	3.7	53
25	Expression of IncRNAs in Low-Grade Gliomas and Glioblastoma Multiforme: An In Silico Analysis. PLoS Medicine, 2016, 13, e1002192.	8.4	71
26	370 Magnetic Resonance-Guided Focused Ultrasound Delivery of Polymeric Brain-Penetrating Nanoparticle MicroRNA Conjugates in Glioblastoma. Neurosurgery, 2016, 63, 210.	1.1	22
27	Combined PDGFR and HDAC Inhibition Overcomes PTEN Disruption in Chordoma. PLoS ONE, 2015, 10, e0134426.	2.5	30
28	Regulatory factor X1 is a new tumor suppressive transcription factor that acts via direct downregulation of CD44 in glioblastoma. Neuro-Oncology, 2014, 16, 1078-1085.	1.2	28
29	Targeting MET for glioma therapy. Neurosurgical Focus, 2014, 37, E10.	2.3	45
30	microRNA-148a Is a Prognostic oncomiR That Targets MIG6 and BIM to Regulate EGFR and Apoptosis in Glioblastoma. Cancer Research, 2014, 74, 1541-1553.	0.9	106
31	MicroRNA-608 and MicroRNA-34a Regulate Chordoma Malignancy by Targeting EGFR, Bcl-xL and MET. PLoS ONE, 2014, 9, e91546.	2.5	80
32	A New IncRNA, APTR, Associates with and Represses the CDKN1A/p21 Promoter by Recruiting Polycomb Proteins. PLoS ONE, 2014, 9, e95216.	2.5	76
33	Novel Anti-Apoptotic MicroRNAs 582-5p and 363 Promote Human Glioblastoma Stem Cell Survival via Direct Inhibition of Caspase 3, Caspase 9, and Bim. PLoS ONE, 2014, 9, e96239.	2.5	95
34	A Novel PTEN/Mutant p53/c-Myc/Bcl-XL Axis Mediates Context-Dependent Oncogenic Effects of PTEN with Implications for Cancer Prognosis and Therapy. Neoplasia, 2013, 15, 952-965.	5.3	46
35	Diacylglycerol Kinase α Is a Critical Signaling Node and Novel Therapeutic Target in Glioblastoma and Other Cancers. Cancer Discovery, 2013, 3, 782-797.	9.4	93
36	The p53–microRNA-34a axis regulates cellular entry receptors for tumor-associated human herpes viruses. Medical Hypotheses, 2013, 81, 62-67.	1.5	7

Roger Abounader

#	Article	IF	CITATIONS
37	Oncogenic effects of miR-10b in glioblastoma stem cells. Journal of Neuro-Oncology, 2013, 112, 153-163.	2.9	151
38	A miR-297/hypoxia/DGK-α axis regulating glioblastoma survival. Neuro-Oncology, 2013, 15, 1652-1663.	1.2	42
39	Hepatocyte Growth Factor Sensitizes Brain Tumors to c-MET Kinase Inhibition. Clinical Cancer Research, 2013, 19, 1433-1444.	7.0	29
40	microRNA-34a promotes DNA damage and mitotic catastrophe. Cell Cycle, 2013, 12, 3500-3511.	2.6	45
41	Cooperation between c-Met and Focal Adhesion Kinase Family Members in Medulloblastoma and Implications for Therapy. Molecular Cancer Therapeutics, 2012, 11, 288-297.	4.1	20
42	The role of microRNAs in glioma initiation and progression. Frontiers in Bioscience - Landmark, 2012, 17, 700.	3.0	94
43	The roles of viruses in brain tumor initiation and oncomodulation. Journal of Neuro-Oncology, 2011, 105, 451-466.	2.9	52
44	When tumor cells make blood vessels: implications for glioblastoma therapy. Future Oncology, 2011, 7, 841-843.	2.4	5
45	Insight into the role of microRNAs in brain tumors (Review). International Journal of Oncology, 2011, 40, 605-24.	3.3	10
46	An Orally Bioavailable c-Met Kinase Inhibitor Potently Inhibits Brain Tumor Malignancy and Growth. Anti-Cancer Agents in Medicinal Chemistry, 2010, 10, 28-35.	1.7	50
47	microRNA-34a is tumor suppressive in brain tumors and glioma stem cells. Cell Cycle, 2010, 9, 1031-1036.	2.6	289
48	XL-184, a MET, VEGFR-2 and RET kinase inhibitor for the treatment of thyroid cancer, glioblastoma multiforme and NSCLC. IDrugs: the Investigational Drugs Journal, 2010, 13, 112-21.	0.7	49
49	The Neuronal MicroRNA miR-326 Acts in a Feedback Loop with Notch and Has Therapeutic Potential against Brain Tumors. Journal of Neuroscience, 2009, 29, 15161-15168.	3.6	211
50	MicroRNA-34a Inhibits Glioblastoma Growth by Targeting Multiple Oncogenes. Cancer Research, 2009, 69, 7569-7576.	0.9	566
51	Interactions between PTEN and the c-Met pathway in glioblastoma and implications for therapy. Molecular Cancer Therapeutics, 2009, 8, 376-385.	4.1	46
52	Interactions between PTEN and receptor tyrosine kinase pathways and their implications for glioma therapy. Expert Review of Anticancer Therapy, 2009, 9, 235-245.	2.4	43
53	Signaling pathways in medulloblastoma. Journal of Cellular Physiology, 2008, 217, 577-583.	4.1	72
54	Functional and molecular interactions between the HGF/c-Met pathway and c-Myc in large-cell medulloblastoma. Laboratory Investigation, 2008, 88, 98-111.	3.7	61

Roger Abounader

#	Article	IF	CITATIONS
55	PTEN Has Tumor-Promoting Properties in the Setting of Gain-of-Function p53 Mutations. Cancer Research, 2008, 68, 1723-1731.	0.9	92
56	Transcription-Dependent Epidermal Growth Factor Receptor Activation by Hepatocyte Growth Factor. Molecular Cancer Research, 2008, 6, 139-150.	3.4	85
57	microRNA-7 Inhibits the Epidermal Growth Factor Receptor and the Akt Pathway and Is Down-regulated in Glioblastoma. Cancer Research, 2008, 68, 3566-3572.	0.9	705
58	Glycolytic glioma cells with active glycogen synthase are sensitive to PTEN and inhibitors of PI3K and gluconeogenesis. Laboratory Investigation, 2005, 85, 1457-1470.	3.7	102
59	Scatter factor/hepatocyte growth factor in brain tumor growth and angiogenesis. Neuro-Oncology, 2005, 7, 436-451.	1.2	269
60	The Scatter Factor/Hepatocyte Growth Factor: c-Met Pathway in Human Embryonal Central Nervous System Tumor Malignancy. Cancer Research, 2005, 65, 9355-9362.	0.9	103
61	Targeting the c-Met Pathway Potentiates Glioblastoma Responses to Î ³ -Radiation. Clinical Cancer Research, 2005, 11, 4479-4486.	7.0	117
62	Design and Expression of Chimeric U1/Ribozyme Transgenes. , 2004, 252, 209-220.		7
63	Regulation of c-Met-dependent gene expression by PTEN. Oncogene, 2004, 23, 9173-9182.	5.9	51
64	CD44-independent hepatocyte growth factor/c-Met autocrine loop promotes malignant peripheral nerve sheath tumor cell invasion in vitro. Glia, 2004, 45, 297-306.	4.9	36
65	Down-regulation of c-Met inhibits growth in the liver of human colorectal carcinoma cells. Cancer Research, 2003, 63, 2990-6.	0.9	55
66	Reduction of stromal fibroblast-induced mammary tumor growth, by retroviral ribozyme transgenes to hepatocyte growth factor/scatter factor and its receptor, c-MET. Clinical Cancer Research, 2003, 9, 4274-81.	7.0	38
67	In vivo targeting of SF/HGF and câ€met expression via U1snRNA/ribozymes inhibits glioma growth and angiogenesis and promotes apoptosis. FASEB Journal, 2002, 16, 1-16.	0.5	159
68	BIIE0246, a potent and highly selective non-peptide neuropeptide Y Y2 receptor antagonist. British Journal of Pharmacology, 2000, 129, 1075-1088.	5.4	111
69	Glioma Inhibition by HGF/NK2, an Antagonist of Scatter Factor/Hepatocyte Growth Factor. Biochemical and Biophysical Research Communications, 2000, 273, 287-293.	2.1	23
70	Expression of Neuropeptide Y Receptors mRNA and Protein in Human Brain Vessels and Cerebromicrovascular Cells in Culture. Journal of Cerebral Blood Flow and Metabolism, 1999, 19, 155-163.	4.3	49
71	Scatter factor/hepatocyte growth factor gene transfer increases rat blood–glioma barrier permeability. Brain Research, 1999, 833, 173-180.	2.2	16
72	Characterization of neuropeptide Y (NPY) receptors in human cerebral arteries with selective agonists and the new Y ₁ antagonist BIBP 3226. British Journal of Pharmacology, 1995, 116, 2245-2250.	5.4	82

19

#	Article	IF	CITATIONS
73	Patterns of Capillary Plasma Perfusion in Brains of Conscious Rats During Normocapnia and Hypercapnia. Circulation Research, 1995, 76, 120-126.	4.5	38

74 Noncoding RNAs in Glioblastoma. , 0, , 95-130.

6