Michael P Czech

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9132571/publications.pdf

Version: 2024-02-01

48315 38742 14,224 91 50 88 citations g-index h-index papers 107 107 107 20050 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	An RNAi therapeutic targeting hepatic DGAT2 in a genetically obese mouse model of nonalcoholic steatohepatitis. Molecular Therapy, 2022, 30, 1329-1342.	8.2	18
2	Loss of function of lysosomal acid lipase (LAL) profoundly impacts osteoblastogenesis and increases fracture risk in humans. Bone, 2021, 148, 115946.	2.9	8
3	CRISPR-enhanced human adipocyte browning as cell therapy for metabolic disease. Nature Communications, 2021, 12, 6931.	12.8	41
4	Macrophage ROBOcalls rattle adipose nerves. Nature Metabolism, 2021, 3, 1441-1442.	11.9	0
5	Mechanisms of insulin resistance related to white, beige, and brown adipocytes. Molecular Metabolism, 2020, 34, 27-42.	6.5	129
6	Single-Cell RNA Profiling Reveals Adipocyte to Macrophage Signaling Sufficient to Enhance Thermogenesis. Cell Reports, 2020, 32, 107998.	6.4	60
7	Control of Adipocyte Thermogenesis and Lipogenesis through \hat{l}^2 3-Adrenergic and Thyroid Hormone Signal Integration. Cell Reports, 2020, 31, 107598.	6.4	37
8	Immunotherapy for Infarcts: In Vivo Postinfarction Macrophage Modulation Using Intramyocardial Microparticle Delivery of Map4k4 Small Interfering RNA. BioResearch Open Access, 2020, 9, 258-268.	2.6	2
9	The Misshapen subfamily of Ste20 kinases regulate proliferation in the aging mammalian intestinal epithelium. Journal of Cellular Physiology, 2019, 234, 21925-21936.	4.1	8
10	Loss of Antigen Presentation in Adipose Tissue Macrophages or in Adipocytes, but Not Both, Improves Glucose Metabolism. Journal of Immunology, 2019, 202, 2451-2459.	0.8	11
11	Molecular pathways linking adipose innervation to insulin action in obesity and diabetes mellitus. Nature Reviews Endocrinology, 2019, 15, 207-225.	9.6	119
12	Hepatocyte-secreted DPP4 in obesity promotes adipose inflammation and insulin resistance. Nature, 2018, 555, 673-677.	27.8	209
13	CRISPR-delivery particles targeting nuclear receptor–interacting protein 1 (Nrip1) in adipose cells to enhance energy expenditure. Journal of Biological Chemistry, 2018, 293, 17291-17305.	3.4	43
14	Neuronal modulation of brown adipose activity through perturbation of white adipocyte lipogenesis. Molecular Metabolism, 2018, 16, 116-125.	6.5	34
15	Developmental Role of Macrophage Cannabinoid-1 Receptor Signaling in Type 2 Diabetes. Diabetes, 2017, 66, 994-1007.	0.6	40
16	Map4k4 impairs energy metabolism in endothelial cells and promotes insulin resistance in obesity. American Journal of Physiology - Endocrinology and Metabolism, 2017, 313, E303-E313.	3.5	9
17	Macrophages dispose of catecholamines in adipose tissue. Nature Medicine, 2017, 23, 1255-1257.	30.7	13
18	Decreasing CB1 receptor signaling in Kupffer cells improves insulin sensitivity in obese mice. Molecular Metabolism, 2017, 6, 1517-1528.	6.5	30

#	Article	IF	Citations
19	Insulin action and resistance in obesity and type 2 diabetes. Nature Medicine, 2017, 23, 804-814.	30.7	865
20	Adipocyte lipid synthesis coupled to neuronal control of thermogenic programming. Molecular Metabolism, 2017, 6, 781-796.	6.5	52
21	Joint analysis of left ventricular expression and circulating plasma levels of Omentin after myocardial ischemia. Cardiovascular Diabetology, 2017, 16, 87.	6.8	15
22	Endothelial Mitogen-Activated Protein Kinase Kinase Kinase Kinase 4 ls Critical for Lymphatic Vascular Development and Function. Molecular and Cellular Biology, 2016, 36, 1740-1749.	2.3	21
23	Map4k4 Signaling Nodes in Metabolic and Cardiovascular Diseases. Trends in Endocrinology and Metabolism, 2016, 27, 484-492.	7.1	32
24	Adipocyte-specific Hypoxia-inducible gene 2 promotes fat deposition and diet-induced insulin resistance. Molecular Metabolism, 2016, 5, 1149-1161.	6.5	42
25	Protein Kinase Mitogen-activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Promotes Obesity-induced Hyperinsulinemia. Journal of Biological Chemistry, 2016, 291, 16221-16230.	3.4	17
26	Peptide- and Amine-Modified Glucan Particles for the Delivery of Therapeutic siRNA. Molecular Pharmaceutics, 2016, 13, 964-978.	4.6	22
27	Emerging evidence for beneficial macrophage functions in atherosclerosis and obesity-induced insulin resistance. Journal of Molecular Medicine, 2016, 94, 267-275.	3.9	35
28	Tenomodulin promotes human adipocyte differentiation and beneficial visceral adipose tissue expansion. Nature Communications, 2016, 7, 10686.	12.8	56
29	Activation of mTORC1 is essential for \hat{l}^2 -adrenergic stimulation of adipose browning. Journal of Clinical Investigation, 2016, 126, 1704-1716.	8.2	171
30	Endothelial protein kinase MAP4K4 promotes vascular inflammation and atherosclerosis. Nature Communications, 2015, 6, 8995.	12.8	81
31	A major role of insulin in promoting obesity-associated adipose tissue inflammation. Molecular Metabolism, 2015, 4, 507-518.	6.5	116
32	The Lipid Droplet Protein Hypoxia-inducible Gene 2 Promotes Hepatic Triglyceride Deposition by Inhibiting Lipolysis. Journal of Biological Chemistry, 2015, 290, 15175-15184.	3.4	45
33	Activated Kupffer cells inhibit insulin sensitivity in obese mice. FASEB Journal, 2015, 29, 2959-2969.	0.5	54
34	Inducible Deletion of Protein Kinase Map4k4 in Obese Mice Improves Insulin Sensitivity in Liver and Adipose Tissues. Molecular and Cellular Biology, 2015, 35, 2356-2365.	2.3	27
35	NETs and traps delay wound healing in diabetes. Trends in Endocrinology and Metabolism, 2015, 26, 451-452.	7.1	26
36	Epicardial and Perivascular Adipose Tissues and Their Influence on Cardiovascular Disease: Basic Mechanisms and Clinical Associations. Journal of the American Heart Association, 2014, 3, e000582.	3.7	243

#	Article	IF	CITATIONS
37	Local Proliferation of Macrophages Contributes to Obesity-Associated Adipose Tissue Inflammation. Cell Metabolism, 2014, 19, 162-171.	16.2	486
38	The Conserved Misshapen-Warts-Yorkie Pathway Acts in Enteroblasts to Regulate Intestinal Stem Cells in Drosophila. Developmental Cell, 2014, 31, 291-304.	7.0	112
39	Endotrophin triggers adipose tissue fibrosis and metabolic dysfunction. Nature Communications, 2014, 5, 3485.	12.8	263
40	Lipid storage by adipose tissue macrophages regulates systemic glucose tolerance. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E374-E383.	3.5	73
41	IL-1 Signaling in Obesity-Induced Hepatic Lipogenesis and Steatosis. PLoS ONE, 2014, 9, e107265.	2.5	116
42	Obesity Notches up fatty liver. Nature Medicine, 2013, 19, 969-971.	30.7	15
43	Activation of the Nlrp3 inflammasome in infiltrating macrophages by endocannabinoids mediates beta cell loss in type 2 diabetes. Nature Medicine, 2013, 19, 1132-1140.	30.7	347
44	Identification of Map4k4 as a Novel Suppressor of Skeletal Muscle Differentiation. Molecular and Cellular Biology, 2013, 33, 678-687.	2.3	28
45	Map4k4 suppresses Srebp-1 and adipocyte lipogenesis independent of JNK signaling. Journal of Lipid Research, 2013, 54, 2697-2707.	4.2	27
46	Gene silencing in adipose tissue macrophages regulates whole-body metabolism in obese mice. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8278-8283.	7.1	132
47	What causes the insulin resistance underlying obesity?. Current Opinion in Endocrinology, Diabetes and Obesity, 2012, 19, 81-87.	2.3	380
48	Association of Common Genetic Variants in the MAP4K4 Locus with Prediabetic Traits in Humans. PLoS ONE, 2012, 7, e47647.	2.5	27
49	RNAi-based therapeutic strategies for metabolic disease. Nature Reviews Endocrinology, 2011, 7, 473-484.	9.6	86
50	Body mass index-independent inflammation in omental adipose tissue associated with insulin resistance in morbid obesity. Surgery for Obesity and Related Diseases, 2011, 7, 60-67.	1.2	186
51	Depot-Specific Differences and Insufficient Subcutaneous Adipose Tissue Angiogenesis in Human Obesity. Circulation, 2011, 123, 186-194.	1.6	287
52	Glucan particles for selective delivery of siRNA to phagocytic cells in mice. Biochemical Journal, 2011, 436, 351-362.	3.7	98
53	Similarity of mouse perivascular and brown adipose tissues and their resistance to diet-induced inflammation. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H1425-H1437.	3.2	248
54	Map4k4 Negatively Regulates Peroxisome Proliferator-activated Receptor (PPAR) \hat{I}^3 Protein Translation by Suppressing the Mammalian Target of Rapamycin (mTOR) Signaling Pathway in Cultured Adipocytes. Journal of Biological Chemistry, 2010, 285, 6595-6603.	3.4	32

#	Article	IF	Citations
55	A Novel Pleckstrin Homology Domain-containing Protein Enhances Insulin-stimulated Akt Phosphorylation and GLUT4 Translocation in Adipocytes. Journal of Biological Chemistry, 2010, 285, 27581-27589.	3.4	41
56	Tumor Necrosis Factor- \hat{l}_{\pm} Induces Caspase-mediated Cleavage of Peroxisome Proliferator-activated Receptor \hat{l}_{3} in Adipocytes. Journal of Biological Chemistry, 2009, 284, 17082-17091.	3.4	45
57	Partial lipodystrophy and insulin resistant diabetes in a patient with a homozygous nonsense mutation in <i>CIDEC</i> . EMBO Molecular Medicine, 2009, 1, 280-287.	6.9	235
58	Orally delivered siRNA targeting macrophage Map4k4 suppresses systemic inflammation. Nature, 2009, 458, 1180-1184.	27.8	506
59	Cidea and FSP27: novel proteins associated with triglyceride storage in adipocytes. FASEB Journal, 2009, 23, 866.2.	0.5	0
60	Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nature Reviews Molecular Cell Biology, 2008, 9, 367-377.	37.0	1,786
61	Cidea is associated with lipid droplets and insulin sensitivity in humans. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7833-7838.	7.1	321
62	Stearoyl-CoA Desaturase 2 Is Required for Peroxisome Proliferator-activated Receptor \hat{I}^3 Expression and Adipogenesis in Cultured 3T3-L1 Cells. Journal of Biological Chemistry, 2008, 283, 2906-2916.	3.4	72
63	Fat-specific Protein 27, a Novel Lipid Droplet Protein That Enhances Triglyceride Storage. Journal of Biological Chemistry, 2007, 282, 34213-34218.	3.4	265
64	Tumor Necrosis Factor \hat{l}_{\pm} (TNF \hat{l}_{\pm}) Stimulates Map4k4 Expression through TNF \hat{l}_{\pm} Receptor 1 Signaling to c-Jun and Activating Transcription Factor 2*. Journal of Biological Chemistry, 2007, 282, 19302-19312.	3.4	77
65	The GLUT4 Glucose Transporter. Cell Metabolism, 2007, 5, 237-252.	16.2	1,069
66	MicroRNAs as Therapeutic Targets. New England Journal of Medicine, 2006, 354, 1194-1195.	27.0	124
67	An RNA interference-based screen identifies MAP4K4/NIK as a negative regulator of PPARγ, adipogenesis, and insulin-responsive hexose transport. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2087-2092.	7.1	142
68	Crystal Structure of the C2 Domain of Class II Phosphatidylinositide 3-Kinase C2α. Journal of Biological Chemistry, 2006, 281, 4254-4260.	3.4	29
69	PTEN, but Not SHIP2, Suppresses Insulin Signaling through the Phosphatidylinositol 3-Kinase/Akt Pathway in 3T3-L1 Adipocytes. Journal of Biological Chemistry, 2005, 280, 22523-22529.	3.4	94
70	Suppression of oxidative metabolism and mitochondrial biogenesis by the transcriptional corepressor RIP140 in mouse adipocytes. Journal of Clinical Investigation, 2005, 116, 125-136.	8.2	198
71	Phosphatidylinositol-4,5-Bisphosphate-Rich Plasma Membrane Patches Organize Active Zones of Endocytosis and Ruffling in Cultured Adipocytes. Molecular and Cellular Biology, 2004, 24, 9102-9123.	2.3	72
72	Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone. Journal of Clinical Investigation, 2004, 114, 1281-1289.	8.2	508

#	Article	IF	CITATIONS
73	Phosphatidylinositol-3-Phosphate. , 2004, , 272-276.		O
74	Insulin signaling through Akt/protein kinase B analyzed by small interfering RNA-mediated gene silencing. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7569-7574.	7.1	330
75	Insulin's expanding control of forkheads. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11198-11200.	7.1	20
76	Dynamics of Phosphoinositides in Membrane Retrieval and Insertion. Annual Review of Physiology, 2003, 65, 791-815.	13.1	138
77	Mitochondrial Biogenesis and Remodeling during Adipogenesis and in Response to the Insulin Sensitizer Rosiglitazone. Molecular and Cellular Biology, 2003, 23, 1085-1094.	2.3	416
78	Fat Targets for Insulin Signaling. Molecular Cell, 2002, 9, 695-696.	9.7	25
79	Glucose transporter recycling in response to insulin is facilitated by myosin Myo1c. Nature, 2002, 420, 821-824.	27.8	235
80	Phox Homology Domains Specifically Bind Phosphatidylinositol Phosphates. Biochemistry, 2001, 40, 8940-8944.	2.5	121
81	Signaling Complexes of the FERM Domain-containing Protein GRSP1 Bound to ARF Exchange Factor GRP1. Journal of Biological Chemistry, 2001, 276, 40065-40070.	3.4	42
82	G $\hat{l}\pm 11$ Signaling through ARF6 Regulates F-Actin Mobilization and GLUT4 Glucose Transporter Translocation to the Plasma Membrane. Molecular and Cellular Biology, 2001, 21, 5262-5275.	2.3	59
83	Lipid rafts and insulin action. Nature, 2000, 407, 147-148.	27.8	47
84	Distinct Polyphosphoinositide Binding Selectivities for Pleckstrin Homology Domains of GRP1-like Proteins Based on DiglycineVersus Triglycine Motifs. Journal of Biological Chemistry, 2000, 275, 32816-32821.	3.4	134
85	Perinuclear Localization and Insulin Responsiveness of GLUT4 Requires Cytoskeletal Integrity in 3T3-L1 Adipocytes. Journal of Biological Chemistry, 2000, 275, 38151-38159.	3.4	108
86	PIP2 and PIP3. Cell, 2000, 100, 603-606.	28.9	516
87	ADP-ribosylation Factor 6 as a Target of Guanine Nucleotide Exchange Factor GRP1. Journal of Biological Chemistry, 1999, 274, 27099-27104.	3.4	108
88	Regulation of GRP1-catalyzed ADP Ribosylation Factor Guanine Nucleotide Exchange by Phosphatidylinositol 3,4,5-Trisphosphate. Journal of Biological Chemistry, 1998, 273, 1859-1862.	3.4	150
89	Signaling by Phosphoinositide-3,4,5-Trisphosphate Through Proteins Containing Pleckstrin and Sec7 Homology Domains. Science, 1997, 275, 1927-1930.	12.6	422
90	Insulin receptor kinase and its mode of signaling membrane components. Diabetes/metabolism Reviews, 1985, 1, 33-58.	0.3	10

#	Article	IF	CITATIONS
91	Biochemical basis of fat cell insulin resistance in obese rodents and man. Metabolism: Clinical and Experimental, 1977, 26, 1057-1078.	3.4	84