
Lorenzo Cerboni Baiardi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9130077/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, 116, 061102.	7.8	8,753
2	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	7.8	2,701
3	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	7.8	1,987
4	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101.	7.8	1,224
5	Binary Black Hole Mergers in the First Advanced LIGO Observing Run. Physical Review X, 2016, 6, .	8.9	898
6	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	26.7	808
7	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102.	7.8	673
8	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal Letters, 2016, 818, L22.	8.3	633
9	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	7.8	466
10	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	26.7	427
11	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Physical Review D, 2016, 93, .	4.7	315
12	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. Physical Review Letters, 2016, 116, 131102.	7.8	269
13	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. Astrophysical Journal Letters, 2016, 833, L1.	8.3	230
14	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	4.0	225
15	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121101.	7.8	194
16	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. Astrophysical Journal, 2017, 839, 12.	4.5	131
17	Observing gravitational-wave transient GW150914 with minimal assumptions. Physical Review D, 2016, 93, .	4.7	119
18	Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. Physical Review X, 2016, 6, .	8.9	106

#	Article	IF	CITATIONS
19	Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence. Physical Review D, 2016, 94, .	4.7	102
20	Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity, 2017, 34, 104002.	4.0	98
21	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO's first observing run. Classical and Quantum Gravity, 2018, 35, 065010.	4.0	94
22	High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. Physical Review D, 2016, 93, .	4.7	92
23	Constraints on cosmic strings using data from the first Advanced LIGO observing run. Physical Review D, 2018, 97, .	4.7	88
24	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121102.	7.8	84
25	Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. Physical Review D, 2017, 96, .	4.7	73
26	All-sky search for short gravitational-wave bursts in the first Advanced LIGO run. Physical Review D, 2017, 95, .	4.7	69
27	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	2.4	69
28	First Search for Nontensorial Gravitational Waves from Known Pulsars. Physical Review Letters, 2018, 120, 031104.	7.8	68
29	All-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2017, 96, .	4.7	64
30	SUPPLEMENT: "THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914―(2016, ApJL, 833, L1). Astrophysical Journal, Supplement Series, 2016, 227, 14.	7.7	63
31	First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. Physical Review D, 2016, 94, .	4.7	60
32	First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data. Physical Review D, 2017, 96, .	4.7	60
33	Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model. Physical Review D, 2017, 95, .	4.7	59
34	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	4.5	52
35	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. Astrophysical Journal, 2017, 847, 47.	4.5	46
36	SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914―(2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016, 225, 8.	7.7	44

Lorenzo Cerboni Baiardi

#	Article	IF	CITATIONS
37	Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube. Physical Review D, 2017, 96, .	4.7	40
38	Evolutionary competition between boundedly rational behavioral rules in oligopoly games. Chaos, Solitons and Fractals, 2015, 79, 204-225.	5.1	36
39	Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. Physical Review D, 2016, 94, .	4.7	35
40	First low frequency all-sky search for continuous gravitational wave signals. Physical Review D, 2016, 93, .	4.7	32
41	Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project. Physical Review D, 2016, 94, .	4.7	31
42	All-sky search for long-duration gravitational wave transients with initial LIGO. Physical Review D, 2016, 93, .	4.7	29
43	An oligopoly model with rational and imitation rules. Mathematics and Computers in Simulation, 2019, 156, 254-278.	4.4	20
44	Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544. Physical Review D, 2017, 95, .	4.7	19
45	All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run. Classical and Quantum Gravity, 2018, 35, 065009.	4.0	18
46	Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. Physical Review D, 2016, 93, .	4.7	17
47	Experimental oligopolies modeling: A dynamic approach based on heterogeneous behaviors. Communications in Nonlinear Science and Numerical Simulation, 2018, 58, 47-61.	3.3	15
48	Search for transient gravitational waves in coincidence with short-duration radio transients during 2007–2013. Physical Review D, 2016, 93, .	4.7	14
49	Bubbling, riddling, blowout and critical curves. Journal of Difference Equations and Applications, 2017, 23, 939-964.	1.1	13
50	An oligopoly model with best response and imitation rules. Applied Mathematics and Computation, 2018, 336, 193-205.	2.2	12
51	Fallacies of composition in nonlinear marketing models. Communications in Nonlinear Science and Numerical Simulation, 2015, 20, 209-228.	3.3	11
52	Imitative and best response behaviors in a nonlinear Cournotian setting. Chaos, 2018, 28, 055913.	2.5	11
53	On a discrete-time model with replicator dynamics in renewable resource exploitation. Journal of Difference Equations and Applications, 2015, 21, 954-973.	1.1	10
54	The Dynamics of the S&P 500 under a Crisis Context: Insights from a Three-Regime Switching Model. Risks, 2020, 8, 71.	2.4	7

4

#	Article	IF	CITATIONS
55	A dynamic marketing model with best reply and inertia. Chaos, Solitons and Fractals, 2015, 79, 145-156.	5.1	6
56	Status of the Advanced Virgo gravitational wave detector. International Journal of Modern Physics A, 2017, 32, 1744003.	1.5	6
57	An evolutionary model with best response and imitative rules. Decisions in Economics and Finance, 2018, 41, 313-333.	1.8	5
58	An evolutionary Cournot oligopoly model with imitators and perfect foresight best responders. Metroeconomica, 2019, 70, 458-475.	1.0	4
59	Primal worst and dual best in robust vector optimization. European Journal of Operational Research, 2019, 275, 830-838.	5.7	4
60	Endogenous desired debt in a Minskyan business model. Chaos, Solitons and Fractals, 2020, 131, 109470.	5.1	2
61	Scalarization and robustness in uncertain vector optimization problems: a non componentwise approach. Journal of Global Optimization, 2022, 84, 295-320.	1.8	2
62	Existence, multiplicity and policy prescriptions for debt sustainability in an OLG model with fiscal policy and debt. Decisions in Economics and Finance, 2020, 43, 769-786.	1.8	0
63	Global dynamic scenarios in a discrete-time model of renewable resource exploitation: a mathematical study. Nonlinear Dynamics, 2020, 102, 1111-1127.	5.2	Ο
64	A note on symmetry breaking in a non linear marketing model. Decisions in Economics and Finance, 2021, 44, 507-531.	1.8	0
65	An Evolutionary Cournot Oligopoly Model with Imitators and Perfect Foresight Best Responders SSRN Electronic Journal. O	0.4	0