
Feng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9129324/publications.pdf Version: 2024-02-01

FENC MANC

#	Article	IF	CITATIONS
1	Synthesis and Processing by Design of Highâ€Nickel Cathode Materials. Batteries and Supercaps, 2022, 5, .	4.7	11
2	Synthesis and Processing by Design of Highâ€Nickel Cathode Materials. Batteries and Supercaps, 2022, 5, .	4.7	3
3	Kinetic Limitations in Singleâ€Crystal Highâ€Nickel Cathodes. Angewandte Chemie - International Edition, 2021, 60, 17350-17355.	13.8	84
4	Kinetic Limitations in Single rystal Highâ€Nickel Cathodes. Angewandte Chemie, 2021, 133, 17490-17495.	2.0	2
5	Imaging the Phase Transformation in Single Particles of the Lithium Titanate Anode for Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 111-118.	5.1	16
6	Conditioning the Surface and Bulk of High-Nickel Cathodes with a Nb Coating: An <i>In Situ</i> X-ray Study. Journal of Physical Chemistry Letters, 2021, 12, 7908-7913.	4.6	16
7	Kinetic Pathways Templated by Low-Temperature Intermediates during Solid-State Synthesis of Layered Oxides. Chemistry of Materials, 2020, 32, 9906-9913.	6.7	34
8	Ultrafast solid-liquid intercalation enabled by targeted microwave energy delivery. Science Advances, 2020, 6, .	10.3	12
9	The interplay between thermodynamics and kinetics in the solid-state synthesis of layered oxides. Nature Materials, 2020, 19, 1088-1095.	27.5	129
10	Kinetic pathways of ionic transport in fast-charging lithium titanate. Science, 2020, 367, 1030-1034.	12.6	197
11	Ni/Li Disordering in Layered Transition Metal Oxide: Electrochemical Impact, Origin, and Control. Accounts of Chemical Research, 2019, 52, 2201-2209.	15.6	315
12	Multi-electron transfer enabled by topotactic reaction in magnetite. Nature Communications, 2019, 10, 1972.	12.8	28
13	Intrinsic Role of Cationic Substitution in Tuning Li/Ni Mixing in High-Ni Layered Oxides. Chemistry of Materials, 2019, 31, 2731-2740.	6.7	85
14	Localized concentration reversal of lithium during intercalation into nanoparticles. Science Advances, 2018, 4, eaao2608.	10.3	50
15	Revisiting Conversion Reaction Mechanisms in Lithium Batteries: Lithiation-Driven Topotactic Transformation in FeF ₂ . Journal of the American Chemical Society, 2018, 140, 17915-17922.	13.7	41
16	Cationic Ordering Coupled to Reconstruction of Basic Building Units during Synthesis of High-Ni Layered Oxides. Journal of the American Chemical Society, 2018, 140, 12484-12492.	13.7	113
17	Synthesis and Electrochemical and Structural Investigations of Oxidatively Stable Li ₂ MoO ₃ and <i>x</i> Li ₂ MoO ₃ ·(1 –) Tj ETQq1 1 0.7843	146rgBT/(Ov ed ock 10
18	Multi-Stage Structural Transformations in Zero-Strain Lithium Titanate Unveiled by <i>in Situ</i> X-ray Absorption Fingerprints. Journal of the American Chemical Society, 2017, 139, 16591-16603.	13.7	57

Feng Wang

#	Article	IF	CITATIONS
19	Synthetic Control of Kinetic Reaction Pathway and Cationic Ordering in Highâ€Ni Layered Oxide Cathodes. Advanced Materials, 2017, 29, 1606715.	21.0	127
20	<i>In Situ</i> Tracking Kinetic Pathways of Li ⁺ /Na ⁺ Substitution during Ion-Exchange Synthesis of Li _{<i>x</i>} Na _{1.5–<i>x</i>} VOPO ₄ F _{0.5} . Journal of the American Chemical Society, 2017, 139, 12504-12516.	13.7	28
21	2D Cross Sectional Analysis and Associated Electrochemistry of Composite Electrodes Containing Dispersed Agglomerates of Nanocrystalline Magnetite, Fe ₃ O ₄ . ACS Applied Materials & Interfaces, 2015, 7, 13457-13466.	8.0	43
22	Ambient synthesis, characterization, and electrochemical activity of LiFePO4 nanomaterials derived from iron phosphate intermediates. Nano Research, 2015, 8, 2573-2594.	10.4	10
23	Solvothermal Synthesis of LiMn _{1–<i>x</i>} Fe _{<i>x</i>} PO ₄ Cathode Materials: A Study of Reaction Mechanisms by Time-Resolved in Situ Synchrotron X-ray Diffraction. Journal of Physical Chemistry C, 2015, 119, 2266-2276.	3.1	29
24	Structure Tracking Aided Design and Synthesis of Li ₃ V ₂ (PO ₄) ₃ Nanocrystals as High-Power Cathodes for Lithium Ion Batteries. Chemistry of Materials, 2015, 27, 5712-5718.	6.7	50
25	Visualization of electrochemically driven solid-state phase transformations using operando hard X-ray spectro-imaging. Nature Communications, 2015, 6, 6883.	12.8	80
26	Ternary metal fluorides as high-energy cathodes with low cycling hysteresis. Nature Communications, 2015, 6, 6668.	12.8	138
27	Eliminating Voltage Decay of Lithiumâ€Rich Li _{1.14} Mn _{0.54} Ni _{0.14} Co _{0.14} O ₂ Cathodes by Controlling the Electrochemical Process. Chemistry - A European Journal, 2015, 21, 7503-7510.	3.3	36
28	Structure Stabilization by Mixed Anions in Oxyfluoride Cathodes for High-Energy Lithium Batteries. ACS Nano, 2015, 9, 10076-10084.	14.6	54
29	Interface Limited Lithium Transport in Solid-State Batteries. Journal of Physical Chemistry Letters, 2014, 5, 298-303.	4.6	148
30	Sodiation <i>via</i> Heterogeneous Disproportionation in FeF ₂ Electrodes for Sodium-Ion Batteries. ACS Nano, 2014, 8, 7251-7259.	14.6	89
31	High-Capacity, Aliovalently Doped Olivine LiMn _{1–3<i>x</i>/2} V _{<i>x</i>} â−i _{<i>x</i>/2} PO ₄ Cathodes without Carbon Coating. Chemistry of Materials, 2014, 26, 3018-3026.	6.7	37
32	Structures of Delithiated and Degraded LiFeBO ₃ , and Their Distinct Changes upon Electrochemical Cycling. Inorganic Chemistry, 2014, 53, 6585-6595.	4.0	26
33	Electrochemical Reaction of Lithium with Nanostructured Silicon Anodes: A Study by In‧itu Synchrotron Xâ€Ray Diffraction and Electron Energy‣oss Spectroscopy. Advanced Energy Materials, 2013, 3, 1324-1331.	19.5	82
34	Excess lithium storage and charge compensation in nanoscale Li _{4+<i>x</i>} Ti ₅ O ₁₂ . Nanotechnology, 2013, 24, 424006.	2.6	37
35	Engineering nano-composite Li4Ti5O12 anodes via scanning electron-probe fabrication. Nano Energy, 2013, 2, 343-350.	16.0	40
36	Structure, defects and thermal stability of delithiated olivine phosphates. Journal of Materials Chemistry, 2012, 22, 20482.	6.7	18

Feng Wang

#	Article	IF	CITATIONS
37	A 3D porous architecture of Si/graphene nanocomposite as high-performance anode materials for Li-ion batteries. Journal of Materials Chemistry, 2012, 22, 7724.	6.7	193
38	Tracking lithium transport and electrochemical reactions in nanoparticles. Nature Communications, 2012, 3, 1201.	12.8	254
39	Degradation and (de)lithiation processes in the high capacity battery material LiFeBO3. Journal of Materials Chemistry, 2012, 22, 8799.	6.7	53
40	Chemical Distribution and Bonding of Lithium in Intercalated Graphite: Identification with Optimized Electron Energy Loss Spectroscopy. ACS Nano, 2011, 5, 1190-1197.	14.6	203
41	Conversion Reaction Mechanisms in Lithium Ion Batteries: Study of the Binary Metal Fluoride Electrodes. Journal of the American Chemical Society, 2011, 133, 18828-18836.	13.7	492
42	Graphene modified LiFePO4 cathode materials for high power lithium ion batteries. Journal of Materials Chemistry, 2011, 21, 3353.	6.7	469
43	LiFexMn1â^`xPO4: A cathode for lithium-ion batteries. Journal of Power Sources, 2011, 196, 3659-3663.	7.8	117
44	What is the Role of Nb in Nickel-Rich Layered Oxide Cathodes for Lithium-Ion Batteries?. ACS Energy Letters, 0, , 1377-1382.	17.4	107