Kurt D Christensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9129258/publications.pdf

Version: 2024-02-01

72 papers

2,786 citations

172457 29 h-index 50 g-index

84 all docs 84 docs citations

84 times ranked 3700 citing authors

#	Article	IF	Citations
1	Interpretation of Genomic Sequencing Results in Healthy and Ill Newborns: Results from the BabySeq Project. American Journal of Human Genetics, 2019, 104, 76-93.	6.2	176
2	The Impact of Whole-Genome Sequencing on the Primary Care and Outcomes of Healthy Adult Patients. Annals of Internal Medicine, 2017, 167, 159.	3.9	145
3	Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine. American Journal of Human Genetics, 2016, 98, 1051-1066.	6.2	137
4	Communicating Genetic Risk Information for Common Disorders in the Era of Genomic Medicine. Annual Review of Genomics and Human Genetics, 2013, 14, 491-513.	6.2	135
5	The MedSeq Project: a randomized trial of integrating whole genome sequencing into clinical medicine. Trials, 2014, 15, 85.	1.6	122
6	The BabySeq project: implementing genomic sequencing in newborns. BMC Pediatrics, 2018, 18, 225.	1.7	115
7	Secondary findings from clinical genomic sequencing: prevalence, patient perspectives, family history assessment, and health-care costs from a multisite study. Genetics in Medicine, 2019, 21, 1100-1110.	2.4	111
8	Are physicians prepared for whole genome sequencing? a qualitative analysis. Clinical Genetics, 2016, 89, 228-234.	2.0	108
9	Harmonizing Clinical Sequencing and Interpretation for the eMERGE III Network. American Journal of Human Genetics, 2019, 105, 588-605.	6.2	99
10	A systematic approach to the reporting of medically relevant findings from whole genome sequencing. BMC Medical Genetics, 2014, 15, 134.	2.1	84
11	Assessing the Costs and Cost-Effectiveness of Genomic Sequencing. Journal of Personalized Medicine, 2015, 5, 470-486.	2.5	81
12	Using Alzheimer's disease as a model for genetic risk disclosure: implications for personal genomics. Clinical Genetics, 2011, 80, 407-414.	2.0	74
13	Providers' knowledge of genetics: A survey of 5915 individuals and families with genetic conditions. Genetics in Medicine, 2007, 9, 259-267.	2.4	70
14	Automated typing of red blood cell and platelet antigens: a whole-genome sequencing study. Lancet Haematology,the, 2018, 5, e241-e251.	4.6	70
15	Direct-to-consumer genetic testing: An assessment of genetic counselors' knowledge and beliefs. Genetics in Medicine, 2011, 13, 325-332.	2.4	61
16	Social and behavioral research in genomic sequencing: approaches from the Clinical Sequencing Exploratory Research Consortium Outcomes and Measures Working Group. Genetics in Medicine, 2014, 16, 727-735.	2.4	60
17	Patient understanding of, satisfaction with, and perceived utility of whole-genome sequencing: findings from the MedSeq Project. Genetics in Medicine, 2018, 20, 1069-1076.	2.4	58
18	Psychological outcomes related to exome and genome sequencing result disclosure: a meta-analysis of seven Clinical Sequencing Exploratory Research (CSER) Consortium studies. Genetics in Medicine, 2019, 21, 2781-2790.	2.4	55

#	Article	IF	Citations
19	Methodological Issues in Assessing the Economic Value of Next-Generation Sequencing Tests: Many Challenges and Not Enough Solutions. Value in Health, 2018, 21, 1033-1042.	0.3	52
20	Changes to perceptions of the pros and cons of genetic susceptibility testing after APOE genotyping for Alzheimer disease risk. Genetics in Medicine, 2011, 13, 409-414.	2.4	47
21	Participants and Study Decliners' Perspectives About the Risks of Participating in a Clinical Trial of Whole Genome Sequencing. Journal of Empirical Research on Human Research Ethics, 2016, 11, 21-30.	1.3	41
22	â€~Someday it will be the norm': physician perspectives on the utility of genome sequencing for patient care in the MedSeqProject. Personalized Medicine, 2015, 12, 23-32.	1.5	40
23	Adopting genetics: motivations and outcomes of personal genomic testing in adult adoptees. Genetics in Medicine, 2016, 18, 924-932.	2.4	39
24	Returning Results in the Genomic Era: Initial Experiences of the eMERGE Network. Journal of Personalized Medicine, 2020, 10, 30.	2.5	39
25	Disclosing Individual CDKN2A Research Results to Melanoma Survivors: Interest, Impact, and Demands on Researchers. Cancer Epidemiology Biomarkers and Prevention, 2011, 20, 522-529.	2.5	37
26	Incorporating ethnicity into genetic risk assessment for Alzheimer disease: the REVEAL study experience. Genetics in Medicine, 2008, 10, 207-214.	2.4	36
27	A randomized controlled trial of disclosing genetic risk information for Alzheimer disease via telephone. Genetics in Medicine, 2018, 20, 132-141.	2.4	36
28	Psychosocial Effect of Newborn Genomic Sequencing on Families in the BabySeq Project. JAMA Pediatrics, 2021, 175, 1132.	6.2	35
29	Disclosing Pleiotropic Effects During Genetic Risk Assessment for Alzheimer Disease. Annals of Internal Medicine, 2016, 164, 155.	3.9	34
30	When bins blur: Patient perspectives on categories of results from clinical whole genome sequencing. AJOB Empirical Bioethics, 2017, 8, 82-88.	1.6	34
31	Returning actionable genomic results in a research biobank: Analytic validity, clinical implementation, and resource utilization. American Journal of Human Genetics, 2021, 108, 2224-2237.	6.2	34
32	Patients' perceived utility of whole-genome sequencing for their healthcare: findings from the MedSeq project. Personalized Medicine, 2016, 13, 13-20.	1.5	31
33	A randomized noninferiority trial of condensed protocols for genetic risk disclosure of Alzheimer's disease. Alzheimer's and Dementia, 2015, 11, 1222-1230.	0.8	28
34	Associations between self-referral and health behavior responses to genetic risk information. Genome Medicine, 2015, 7, 10.	8.2	27
35	Returning Individual Research Results: Development of a Cancer Genetics Education and Risk Communication Protocol. Journal of Empirical Research on Human Research Ethics, 2010, 5, 17-30.	1.3	26
36	Short-term costs of integrating whole-genome sequencing into primary care and cardiology settings: a pilot randomized trial. Genetics in Medicine, 2018, 20, 1544-1553.	2.4	25

#	Article	IF	Citations
37	Precision Population Medicine in Primary Care: The Sanford Chip Experience. Frontiers in Genetics, 2021, 12, 626845.	2.3	25
38	Association of Pathogenic Variants in Hereditary Cancer Genes With Multiple Diseases. JAMA Oncology, 2022, 8, 835.	7.1	25
39	How Can Psychological Science Inform Research About Genetic Counseling for Clinical Genomic Sequencing?. Journal of Genetic Counseling, 2015, 24, 193-204.	1.6	22
40	Participant Satisfaction With a Preference-Setting Tool for the Return of Individual Research Results in Pediatric Genomic Research. Journal of Empirical Research on Human Research Ethics, 2015, 10, 414-426.	1.3	19
41	Disclosing genetic risk for coronary heart disease: effects on perceived personal control and genetic counseling satisfaction. Clinical Genetics, 2016, 89, 251-257.	2.0	19
42	Preferences for the Return of Individual Results From Research on Pediatric Biobank Samples. Journal of Empirical Research on Human Research Ethics, 2017, 12, 97-106.	1.3	19
43	Parental Attitudes Toward Standard Newborn Screening and Newborn Genomic Sequencing: Findings From the BabySeq Study. Frontiers in Genetics, 2022, 13, 867371.	2.3	19
44	Disclosing genetic risk of Alzheimer's disease to cognitively impaired patients and visit companions: Findings from the REVEAL Study. Patient Education and Counseling, 2017, 100, 927-935.	2.2	18
45	Improved provider preparedness through an 8-part genetics and genomic education program. Genetics in Medicine, 2022, 24, 214-224.	2.4	18
46	Disclosing genetic risk for Alzheimer's dementia to individuals with mild cognitive impairment. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2020, 6, e12002.	3.7	16
47	Universal newborn genetic screening for pediatric cancer predisposition syndromes: model-based insights. Genetics in Medicine, 2021, 23, 1366-1371.	2.4	16
48	How could disclosing incidental information from whole-genome sequencing affect patient behavior?. Personalized Medicine, 2013, 10, 377-386.	1.5	14
49	Cost Analyses of Genomic Sequencing: Lessons Learned from the MedSeq Project. Value in Health, 2018, 21, 1054-1061.	0.3	13
50	A whole genome approach for discovering the genetic basis of blood group antigens: independent confirmation for P1 and Xg ^a . Transfusion, 2019, 59, 908-915.	1.6	13
51	Do research participants share genomic screening results with family members?. Journal of Genetic Counseling, 2022, 31, 447-458.	1.6	12
52	Anticipated responses of early adopter genetic specialists and nongenetic specialists to unsolicited genomic secondary findings. Genetics in Medicine, 2018, 20, 1186-1195.	2.4	11
53	Community Engagement about Genetic Variation Research. Population Health Management, 2012, 15, 78-89.	1.7	10
54	Factors Affecting Recall of Different Types of Personal Genetic Information about Alzheimer's Disease Risk: The REVEAL Study. Public Health Genomics, 2015, 18, 78-86.	1.0	10

#	Article	IF	CITATIONS
55	The impact of genetic counselors' use of facilitative strategies on cognitive and emotional processing of genetic risk disclosure for Alzheimer's disease. Patient Education and Counseling, 2018, 101, 817-823.	2.2	10
56	Communication Predictors of Patient and Companion Satisfaction with Alzheimer's Genetic Risk Disclosure. Journal of Health Communication, 2018, 23, 807-814.	2.4	7
57	Estimated Cost-effectiveness of Genetic Testing in Siblings of Newborns With Cancer Susceptibility Gene Variants. JAMA Network Open, 2021, 4, e2129742.	5.9	7
58	A Cost–Consequence Analysis of Preemptive SLCO1B1 Testing for Statin Myopathy Risk Compared to Usual Care. Journal of Personalized Medicine, 2021, 11, 1123.	2.5	7
59	Family health history reporting is sensitive to small changes in wording. Genetics in Medicine, 2016, 18, 1308-1311.	2.4	6
60	Quantifying Downstream Healthcare Utilization in Studies of Genomic Testing. Value in Health, 2020, 23, 559-565.	0.3	6
61	Progression of precision statin prescribing for reduction of statin-associated muscle symptoms. Pharmacogenomics, 2022, 23, 585-596.	1.3	6
62	Effects of participation in a U.S. trial of newborn genomic sequencing on parents at risk for depression. Journal of Genetic Counseling, 2022, 31, 218-229.	1.6	5
63	Enhancing Autonomy in Biobank Decisions: Too Much of a Good Thing?. Journal of Empirical Research on Human Research Ethics, 2018, 13, 125-138.	1.3	4
64	Primary care providers' responses to unsolicited Lynch syndrome secondary findings of varying clinical significance. Genetics in Medicine, 2021, 23, 1977-1983.	2.4	4
65	Population-Based Newborn Screening for Germline <i>TP53</i> Variants: Clinical Benefits, Cost-Effectiveness, and Value of Further Research. Journal of the National Cancer Institute, 2022, 114, 722-731.	6.3	4
66	Phenotypic Characterization of Individuals With Variants in Cardiovascular Genes in the Absence of a Primary Cardiovascular Indication for Testing. Circulation Genomic and Precision Medicine, 2019, 12, e002463.	3.6	3
67	Behavioral and psychological impact of genome sequencing: a pilot randomized trial of primary care and cardiology patients. Npj Genomic Medicine, 2021, 6, 72.	3.8	3
68	Airmen and health-care providers' attitudes toward the use of genomic sequencing in the US Air Force: findings from the MilSeq Project. Genetics in Medicine, 2020, 22, 2003-2010.	2.4	2
69	Abstract 20188: The Effect of Disclosing Genetic Risk for Coronary Heart Disease on Perceived Personal Control and Genetic Counseling Satisfaction: The MI-GENES Study. Circulation, 2014, 130, .	1.6	1
70	Polygenic risk score-guided prostate cancer screening among white and Black US men: a Markov modeling study. Molecular Genetics and Metabolism, 2021, 132, S328-S329.	1.1	0
71	eP505: Physicians' attitudes about integrating genetic testing into primary care as an elective clinical service: The Sanford Health experience. Genetics in Medicine, 2022, 24, S322.	2.4	0
72	eP496: Essential workforce for a successful precision medicine program. Genetics in Medicine, 2022, 24, S315-S316.	2.4	0