James David Bever

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9129049/publications.pdf Version: 2024-02-01

		39113	30277
109	15,114	52	107
papers	citations	h-index	g-index
112	112	112	10855
all docs	docs citations	times ranked	citing authors

IAMES DAVID REVED

#	Article	IF	CITATIONS
1	Perennial, but not annual legumes synergistically benefit from infection with arbuscular mycorrhizal fungi and rhizobia: a metaâ€analysis. New Phytologist, 2022, 233, 505-514.	3.5	27
2	Can Nucleation Bridge to Desirable Alternative Stable States? Theory and Applications. Bulletin of the Ecological Society of America, 2022, 103, e01953.	0.2	2
3	Environmental identification of arbuscular mycorrhizal fungi using the LSU rDNA gene region: an expanded database and improved pipeline. Mycorrhiza, 2022, 32, 145-153.	1.3	16
4	Plant-soil feedback as a driver of spatial structure in ecosystems. Physics of Life Reviews, 2022, 40, 6-14.	1.5	10
5	Native mycorrhizal fungi improve milkweed growth, latex, and establishment while some commercial fungi may inhibit them. Ecosphere, 2022, 13, .	1.0	7
6	Evidence for the evolution of native plant response to mycorrhizal fungi in postâ€agricultural grasslands. Ecology and Evolution, 2022, 12, .	0.8	1
7	Celebrating INVAM: 35Âyears of the largest living culture collection of arbuscular mycorrhizal fungi. Mycorrhiza, 2021, 31, 117-126.	1.3	7
8	Soil microbial legacy drives crop diversity advantage: Linking ecological plant–soil feedback with agricultural intercropping. Journal of Applied Ecology, 2021, 58, 496-506.	1.9	50
9	Utility of large subunit for environmental sequencing of arbuscular mycorrhizal fungi: a new reference database and pipeline. New Phytologist, 2021, 229, 3048-3052.	3.5	20
10	Adaptation of plantâ€mycorrhizal interactions to moisture availability in prairie restoration. Restoration Ecology, 2021, 29, .	1.4	7
11	Root pathogen diversity and composition varies with climate in undisturbed grasslands, but less so in anthropogenically disturbed grasslands. ISME Journal, 2021, 15, 304-317.	4.4	26
12	Evidence of Adaptation of Little Bluestem to the Local Environment of Central Kansas. Transactions of the Kansas Academy of Science, 2021, 124, .	0.0	0
13	Mycorrhizal types influence island biogeography of plants. Communications Biology, 2021, 4, 1128.	2.0	12
14	Microbiome influence on host community dynamics: Conceptual integration of microbiome feedback with classical host–microbe theory. Ecology Letters, 2021, 24, 2796-2811.	3.0	22
15	Biochar soil amendments in prairie restorations do not interfere with benefits from inoculation with native arbuscular mycorrhizal fungi. Restoration Ecology, 2020, 28, 785-795.	1.4	13
16	Pathogens and Mutualists as Joint Drivers of Host Species Coexistence and Turnover: Implications for Plant Competition and Succession. American Naturalist, 2020, 195, 591-602.	1.0	23
17	Belowâ€groundâ€mediated and phaseâ€dependent processes drive nitrogenâ€evoked community changes in grasslands. Journal of Ecology, 2020, 108, 1874-1887.	1.9	29
18	Community context for mechanisms of disease dilution: insights from linking epidemiology and plant–soil feedback theory. Annals of the New York Academy of Sciences, 2020, 1469, 65-85.	1.8	16

#	Article	IF	CITATIONS
19	Native plant abundance, diversity, and richness increases in prairie restoration with field inoculation density of native mycorrhizal amendments. Restoration Ecology, 2020, 28, S373.	1.4	17
20	A nucleation framework for transition between alternate states: shortâ€circuiting barriers to ecosystem recovery. Ecology, 2020, 101, e03099.	1.5	18
21	Symbionts as Filters of Plant Colonization of Islands: Tests of Expected Patterns and Environmental Consequences in the Galapagos. Plants, 2020, 9, 74.	1.6	9
22	Mycorrhizal feedbacks generate positive frequency dependence accelerating grassland succession. Journal of Ecology, 2019, 107, 622-632.	1.9	71
23	Beyond the black box: promoting mathematical collaborations for elucidating interactions in soil ecology. Ecosphere, 2019, 10, e02799.	1.0	8
24	Benefits of Native Mycorrhizal Amendments to Perennial Agroecosystems Increases with Field Inoculation Density. Agronomy, 2019, 9, 353.	1.3	9
25	Sensitivity to <scp>AMF</scp> species is greater in lateâ€successional than earlyâ€successional native or nonnative grassland plants. Ecology, 2019, 100, e02855.	1.5	47
26	Climate Affects Plant-Soil Feedback of Native and Invasive Grasses: Negative Feedbacks in Stable but Not in Variable Environments. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	17
27	Effect of permafrost thaw on plant and soil fungal community in a boreal forest: Does fungal community change mediate plant productivity response?. Journal of Ecology, 2019, 107, 1737-1752.	1.9	34
28	Soil microbiome mediates positive plant diversityâ€productivity relationships in late successional grassland species. Ecology Letters, 2019, 22, 1221-1232.	3.0	54
29	When and where plantâ€soil feedback may promote plant coexistence: a metaâ€analysis. Ecology Letters, 2019, 22, 1274-1284.	3.0	195
30	Plant-soil feedbacks promote coexistence and resilience in multi-species communities. PLoS ONE, 2019, 14, e0211572.	1.1	28
31	Are two strategies better than one? Manipulation of seed density and soil community in an experimental prairie restoration. Restoration Ecology, 2019, 27, 1021-1031.	1.4	12
32	Mycorrhizal fungi influence global plant biogeography. Nature Ecology and Evolution, 2019, 3, 424-429.	3.4	74
33	Asymmetric facilitation induced by inoculation with arbuscular mycorrhizal fungi leads to overyielding in maize/faba bean intercropping. Journal of Plant Interactions, 2019, 14, 10-20.	1.0	14
34	Disturbance reduces the differentiation of mycorrhizal fungal communities in grasslands along a precipitation gradient. Ecological Applications, 2018, 28, 736-748.	1.8	45
35	Sowing density effects and patterns of colonization in a prairie restoration. Restoration Ecology, 2018, 26, 245-254.	1.4	10
36	The Plant Microbiome and Native Plant Restoration: The Example of Native Mycorrhizal Fungi. BioScience, 2018, 68, 996-1006.	2.2	107

#	Article	IF	CITATIONS
37	Biogeography of arbuscular mycorrhizal fungi (Glomeromycota): a phylogenetic perspective on species distribution patterns. Mycorrhiza, 2018, 28, 587-603.	1.3	100
38	Ecology of Floristic Quality Assessment: testing for correlations between coefficients of conservatism, species traits and mycorrhizal responsiveness. AoB PLANTS, 2018, 10, plx073.	1.2	42
39	Frequency-dependent feedback constrains plant community coexistence. Nature Ecology and Evolution, 2018, 2, 1403-1407.	3.4	66
40	Evolutionary history of plant hosts and fungal symbionts predicts the strength of mycorrhizal mutualism. Communications Biology, 2018, 1, 116.	2.0	70
41	Relative importance of competition and plant–soil feedback, their synergy, context dependency and implications for coexistence. Ecology Letters, 2018, 21, 1268-1281.	3.0	197
42	Plant-soil feedback contributes to intercropping overyielding by reducing the negative effect of take-all on wheat and compensating the growth of faba bean. Plant and Soil, 2017, 415, 1-12.	1.8	63
43	Dominant mycorrhizal association of trees alters carbon and nutrient cycling by selecting for microbial groups with distinct enzyme function. New Phytologist, 2017, 214, 432-442.	3.5	173
44	Negative plantâ€phyllosphere feedbacks in native Asteraceae hosts – a novel extension of the plantâ€soil feedback framework. Ecology Letters, 2017, 20, 1064-1073.	3.0	50
45	Open access increases citations of papers in ecology. Ecosphere, 2017, 8, e01887.	1.0	28
46	The missing link in grassland restoration: arbuscular mycorrhizal fungi inoculation increases plant diversity and accelerates succession. Journal of Applied Ecology, 2017, 54, 1301-1309.	1.9	152
47	Evolutionary history shapes patterns of mutualistic benefit in Acacia –rhizobial interactions. Evolution; International Journal of Organic Evolution, 2016, 70, 1473-1485.	1.1	18
48	Plant preferential allocation and fungal reward decline with soil phosphorus: implications for mycorrhizal mutualism. Ecosphere, 2016, 7, e01256.	1.0	94
49	<scp>AMF</scp> , phylogeny, and succession: specificity of response to mycorrhizal fungi increases for lateâ€successional plants. Ecosphere, 2016, 7, e01555.	1.0	56
50	Home-field advantage? evidence of local adaptation among plants, soil, and arbuscular mycorrhizal fungi through meta-analysis. BMC Evolutionary Biology, 2016, 16, 122.	3.2	148
51	MycoDB, a global database of plant response to mycorrhizal fungi. Scientific Data, 2016, 3, 160028.	2.4	90
52	Phylogenetically Structured Differences in rRNA Gene Sequence Variation among Species of Arbuscular Mycorrhizal Fungi and Their Implications for Sequence Clustering. Applied and Environmental Microbiology, 2016, 82, 4921-4930.	1.4	31
53	Locally adapted arbuscular mycorrhizal fungi improve vigor and resistance to herbivory of native prairie plant species. Ecosphere, 2015, 6, 1-16.	1.0	88
54	Spatial Heterogeneity in Soil Microbes Alters Outcomes of Plant Competition. PLoS ONE, 2015, 10, e0125788.	1.1	32

#	Article	IF	CITATIONS
55	Preferential allocation, physioâ€evolutionary feedbacks, and the stability and environmental patterns of mutualism between plants and their root symbionts. New Phytologist, 2015, 205, 1503-1514.	3.5	129
56	Mycorrhizal response trades off with plant growth rate and increases with plant successional status. Ecology, 2015, 96, 1768-1774.	1.5	105
57	Plantâ€ s oil feedbacks as drivers of succession: evidence from remnant and restored tallgrass prairies. Ecosphere, 2015, 6, 1-12.	1.0	106
58	Maintenance of Plant Species Diversity by Pathogens. Annual Review of Ecology, Evolution, and Systematics, 2015, 46, 305-325.	3.8	320
59	Partner diversity and identity impacts on plant productivity in <i>Acacia</i> –rhizobial interactions. Journal of Ecology, 2015, 103, 130-142.	1.9	49
60	Joint Evolution of Kin Recognition and Cooperation in Spatially Structured Rhizobium Populations. PLoS ONE, 2014, 9, e95141.	1.1	9
61	Coexistence and relative abundance in plant communities are determined by feedbacks when the scale of feedback and dispersal is local. Journal of Ecology, 2014, 102, 1195-1201.	1.9	53
62	Synergism and context dependency of interactions between arbuscular mycorrhizal fungi and rhizobia with a prairie legume. Ecology, 2014, 95, 1045-1054.	1.5	144
63	Microbial phylotype composition and diversity predicts plant productivity and plant–soil feedbacks. Ecology Letters, 2013, 16, 167-174.	3.0	79
64	Plant–soil feedbacks: the past, the present and future challenges. Journal of Ecology, 2013, 101, 265-276.	1.9	1,259
65	Soil aggregate stability increase is strongly related to fungal community succession along an abandoned agricultural field chronosequence in the <scp>B</scp> olivian <scp>A</scp> ltiplano. Journal of Applied Ecology, 2013, 50, 1266-1273.	1.9	90
66	Response to Comment on "Conspecific Negative Density Dependence and Forest Diversity― Science, 2012, 338, 469-469.	6.0	5
67	Conspecific Negative Density Dependence and Forest Diversity. Science, 2012, 336, 904-907.	6.0	345
68	Nonâ€native plants and soil microbes: potential contributors to the consistent reduction in soil aggregate stability caused by the disturbance of North American grasslands. New Phytologist, 2012, 196, 212-222.	3.5	48
69	Microbial Population and Community Dynamics on Plant Roots and Their Feedbacks on Plant Communities. Annual Review of Microbiology, 2012, 66, 265-283.	2.9	429
70	Inoculation with a Native Soil Community Advances Succession in a Grassland Restoration. Restoration Ecology, 2012, 20, 218-226.	1.4	148
71	Consequences of simultaneous interactions of fungal endophytes and arbuscular mycorrhizal fungi with a shared host grass. Oikos, 2012, 121, 2090-2096.	1.2	67
72	Symbiosis research, technology, and education: Proceedings of the 6th International Symbiosis Society Congress held in Madison Wisconsin, USA, August 2009. Symbiosis, 2010, 51, 1-12.	1.2	1

#	Article	IF	CITATIONS
73	The interactive effects of plant microbial symbionts: a review and meta-analysis. Symbiosis, 2010, 51, 139-148.	1.2	137
74	The Effect of Restoration Methods on the Quality of the Restoration and Resistance to Invasion by Exotics. Restoration Ecology, 2010, 18, 181-187.	1.4	72
75	Negative plant–soil feedback predicts tree-species relative abundance in a tropical forest. Nature, 2010, 466, 752-755.	13.7	942
76	Advancing Synthetic Ecology: A Database System to Facilitate Complex Ecological Meta-Analyses. Bulletin of the Ecological Society of America, 2010, 91, 235-243.	0.2	13
77	Rooting theories of plant community ecology in microbial interactions. Trends in Ecology and Evolution, 2010, 25, 468-478.	4.2	666
78	Mycorrhizal densities decline in association with nonnative plants and contribute to plant invasion. Ecology, 2009, 90, 399-407.	1.5	240
79	Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. Ecology Letters, 2009, 12, 13-21.	3.0	407
80	Mycorrhizal Symbioses and Plant Invasions. Annual Review of Ecology, Evolution, and Systematics, 2009, 40, 699-715.	3.8	388
81	Analogous effects of arbuscular mycorrhizal fungi in the laboratory and a North Carolina field. New Phytologist, 2008, 180, 162-175.	3.5	49
82	Rhizobial mediation of <i>Acacia</i> adaptation to soil salinity: evidence of underlying tradeâ€offs and tests of expected patterns. Journal of Ecology, 2008, 96, 746-755.	1.9	47
83	DIRECT AND INTERACTIVE EFFECTS OF ENEMIES AND MUTUALISTS ON PLANT PERFORMANCE: A META-ANALYSIS. Ecology, 2007, 88, 1021-1029.	1.5	208
84	Biotic interactions and plant invasions. Ecology Letters, 2006, 9, 726-740.	3.0	649
85	Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system. New Phytologist, 2006, 172, 554-562.	3.5	325
86	Spatio-temporal community dynamics induced by frequency dependent interactions. Ecological Modelling, 2006, 197, 133-147.	1.2	27
87	Threeâ€Way Interactions among Mutualistic Mycorrhizal Fungi, Plants, and Plant Enemies: Hypotheses and Synthesis. American Naturalist, 2006, 167, 141-152.	1.0	157
88	Arbuscular mycorrhizal fungi: Hyphal fusion and multigenomic structure. Nature, 2005, 433, E3-E4.	13.7	53
89	Genotype, environment, and genotype by environment interactions determine quantitative resistance to leaf rust (Coleosporium asterum) in Euthamia graminifolia (Asteraceae). New Phytologist, 2004, 162, 729-743.	3.5	49
90	Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytologist, 2003, 157, 465-473.	3.5	718

#	Article	IF	CITATIONS
91	GRASSROOTS ECOLOGY: PLANT–MICROBE–SOIL INTERACTIONS AS DRIVERS OF PLANT COMMUNITY STRUCTURE AND DYNAMICS. Ecology, 2003, 84, 2281-2291.	1.5	601
92	A novel theory to explain species diversity in landscapes: positive frequency dependence and habitat suitability. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 2389-2393.	1.2	59
93	Negative feedback within a mutualism: host–specific growth of mycorrhizal fungi reduces plant benefit. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 2595-2601.	1.2	341
94	NEGATIVE FREQUENCY DEPENDENCE AND THE IMPORTANCE OF SPATIAL SCALE. Ecology, 2002, 83, 21-27.	1.5	51
95	Host-specificity of AM fungal population growth rates can generate feedback on plant growth. Plant and Soil, 2002, 244, 281-290.	1.8	169
96	NEGATIVE FREQUENCY DEPENDENCE AND THE IMPORTANCE OF SPATIAL SCALE. , 2002, 83, 21.		1
97	MECHANISMS OF PLANT SPECIES COEXISTENCE: ROLES OF RHIZOSPHERE BACTERIA AND ROOT FUNGAL PATHOGENS. Ecology, 2001, 82, 3285-3294.	1.5	62
98	Evidence of a mycorrhizal mechanism for the adaptation of Andropogon gerardii (Poaceae) to high― and lowâ€nutrient prairies. American Journal of Botany, 2001, 88, 1650-1656.	0.8	110
99	Coexistence under positive frequency dependence. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 273-277.	1.2	63
100	MECHANISMS OF PLANT SPECIES COEXISTENCE: ROLES OF RHIZOSPHERE BACTERIA AND ROOT FUNGAL PATHOGENS. , 2001, 82, 3285.		7
101	Evolution of nitrogen fixation in spatially structured populations of Rhizobium. Heredity, 2000, 85, 366-372.	1.2	57
102	Genetic variation and evolutionary tradeâ€offs for sexual and asexual reproductive modes in Allium vineale (Liliaceae). American Journal of Botany, 2000, 87, 1769-1777.	0.8	87
103	MAINTENANCE OF DIVERSITY WITHIN PLANT COMMUNITIES: SOIL PATHOGENS AS AGENTS OF NEGATIVE FEEDBACK. Ecology, 1998, 79, 1595-1601.	1.5	230
104	Genetic variation of morphological characters within a single isolate of the endomycorrhizal fungus Glomus clarum (Glomaceae). American Journal of Botany, 1997, 84, 1211-1216.	0.8	30
105	Sexual Transmission of Disease and Host Mating Systems: Within-Season Reproductive Success. American Naturalist, 1997, 149, 485-506.	1.0	101
106	The Population Dynamics of Annual Plants and Soil-Borne Fungal Pathogens. Journal of Ecology, 1997, 85, 313.	1.9	40
107	Incorporating the Soil Community into Plant Population Dynamics: The Utility of the Feedback Approach. Journal of Ecology, 1997, 85, 561.	1.9	929
108	Host-Dependent Sporulation and Species Diversity of Arbuscular Mycorrhizal Fungi in a Mown Grassland. Journal of Ecology, 1996, 84, 71.	1.9	472

#	Article	IF	CITATIONS
109	Feeback between Plants and Their Soil Communities in an Old Field Community. Ecology, 1994, 75, 1965-1977.	1.5	606