James David Bever

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9129049/publications.pdf Version: 2024-02-01

		34105	24258
110	15,114	52	110
papers	citations	h-index	g-index
112	112	112	9667
all docs	docs citations	times ranked	citing authors

IAMES DAVID REVED

#	Article	IF	CITATIONS
1	Plant–soil feedbacks: the past, the present and future challenges. Journal of Ecology, 2013, 101, 265-276.	4.0	1,259
2	Negative plant–soil feedback predicts tree-species relative abundance in a tropical forest. Nature, 2010, 466, 752-755.	27.8	942
3	Incorporating the Soil Community into Plant Population Dynamics: The Utility of the Feedback Approach. Journal of Ecology, 1997, 85, 561.	4.0	929
4	Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytologist, 2003, 157, 465-473.	7.3	718
5	Rooting theories of plant community ecology in microbial interactions. Trends in Ecology and Evolution, 2010, 25, 468-478.	8.7	666
6	Biotic interactions and plant invasions. Ecology Letters, 2006, 9, 726-740.	6.4	649
7	Feeback between Plants and Their Soil Communities in an Old Field Community. Ecology, 1994, 75, 1965-1977.	3.2	606
8	GRASSROOTS ECOLOGY: PLANT–MICROBE–SOIL INTERACTIONS AS DRIVERS OF PLANT COMMUNITY STRUCTURE AND DYNAMICS. Ecology, 2003, 84, 2281-2291.	3.2	601
9	Host-Dependent Sporulation and Species Diversity of Arbuscular Mycorrhizal Fungi in a Mown Grassland. Journal of Ecology, 1996, 84, 71.	4.0	472
10	Microbial Population and Community Dynamics on Plant Roots and Their Feedbacks on Plant Communities. Annual Review of Microbiology, 2012, 66, 265-283.	7.3	429
11	Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. Ecology Letters, 2009, 12, 13-21.	6.4	407
12	Mycorrhizal Symbioses and Plant Invasions. Annual Review of Ecology, Evolution, and Systematics, 2009, 40, 699-715.	8.3	388
13	Conspecific Negative Density Dependence and Forest Diversity. Science, 2012, 336, 904-907.	12.6	345
14	Negative feedback within a mutualism: host–specific growth of mycorrhizal fungi reduces plant benefit. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 2595-2601.	2.6	341
15	Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system. New Phytologist, 2006, 172, 554-562.	7.3	325
16	Maintenance of Plant Species Diversity by Pathogens. Annual Review of Ecology, Evolution, and Systematics, 2015, 46, 305-325.	8.3	320
17	Mycorrhizal densities decline in association with nonnative plants and contribute to plant invasion. Ecology, 2009, 90, 399-407.	3.2	240
18	MAINTENANCE OF DIVERSITY WITHIN PLANT COMMUNITIES: SOIL PATHOGENS AS AGENTS OF NEGATIVE FEEDBACK. Ecology, 1998, 79, 1595-1601.	3.2	230

#	Article	IF	CITATIONS
19	DIRECT AND INTERACTIVE EFFECTS OF ENEMIES AND MUTUALISTS ON PLANT PERFORMANCE: A META-ANALYSIS. Ecology, 2007, 88, 1021-1029.	3.2	208
20	Relative importance of competition and plant–soil feedback, their synergy, context dependency and implications for coexistence. Ecology Letters, 2018, 21, 1268-1281.	6.4	197
21	When and where plantâ€soil feedback may promote plant coexistence: a metaâ€analysis. Ecology Letters, 2019, 22, 1274-1284.	6.4	195
22	Dominant mycorrhizal association of trees alters carbon and nutrient cycling by selecting for microbial groups with distinct enzyme function. New Phytologist, 2017, 214, 432-442.	7.3	173
23	Host-specificity of AM fungal population growth rates can generate feedback on plant growth. Plant and Soil, 2002, 244, 281-290.	3.7	169
24	Threeâ€Way Interactions among Mutualistic Mycorrhizal Fungi, Plants, and Plant Enemies: Hypotheses and Synthesis. American Naturalist, 2006, 167, 141-152.	2.1	157
25	The missing link in grassland restoration: arbuscular mycorrhizal fungi inoculation increases plant diversity and accelerates succession. Journal of Applied Ecology, 2017, 54, 1301-1309.	4.0	152
26	Inoculation with a Native Soil Community Advances Succession in a Grassland Restoration. Restoration Ecology, 2012, 20, 218-226.	2.9	148
27	Home-field advantage? evidence of local adaptation among plants, soil, and arbuscular mycorrhizal fungi through meta-analysis. BMC Evolutionary Biology, 2016, 16, 122.	3.2	148
28	Synergism and context dependency of interactions between arbuscular mycorrhizal fungi and rhizobia with a prairie legume. Ecology, 2014, 95, 1045-1054.	3.2	144
29	The interactive effects of plant microbial symbionts: a review and meta-analysis. Symbiosis, 2010, 51, 139-148.	2.3	137
30	Preferential allocation, physioâ€evolutionary feedbacks, and the stability and environmental patterns of mutualism between plants and their root symbionts. New Phytologist, 2015, 205, 1503-1514.	7.3	129
31	Evidence of a mycorrhizal mechanism for the adaptation of Andropogon gerardii (Poaceae) to high― and lowâ€nutrient prairies. American Journal of Botany, 2001, 88, 1650-1656.	1.7	110
32	The Plant Microbiome and Native Plant Restoration: The Example of Native Mycorrhizal Fungi. BioScience, 2018, 68, 996-1006.	4.9	107
33	Plantâ€soil feedbacks as drivers of succession: evidence from remnant and restored tallgrass prairies. Ecosphere, 2015, 6, 1-12.	2.2	106
34	Mycorrhizal response trades off with plant growth rate and increases with plant successional status. Ecology, 2015, 96, 1768-1774.	3.2	105
35	Sexual Transmission of Disease and Host Mating Systems: Within-Season Reproductive Success. American Naturalist, 1997, 149, 485-506.	2.1	101
36	Biogeography of arbuscular mycorrhizal fungi (Glomeromycota): a phylogenetic perspective on species distribution patterns. Mycorrhiza, 2018, 28, 587-603.	2.8	100

#	Article	IF	CITATIONS
37	Plant preferential allocation and fungal reward decline with soil phosphorus: implications for mycorrhizal mutualism. Ecosphere, 2016, 7, e01256.	2.2	94
38	Soil aggregate stability increase is strongly related to fungal community succession along an abandoned agricultural field chronosequence in the <scp>B</scp> olivian <scp>A</scp> ltiplano. Journal of Applied Ecology, 2013, 50, 1266-1273.	4.0	90
39	MycoDB, a global database of plant response to mycorrhizal fungi. Scientific Data, 2016, 3, 160028.	5.3	90
40	Locally adapted arbuscular mycorrhizal fungi improve vigor and resistance to herbivory of native prairie plant species. Ecosphere, 2015, 6, 1-16.	2.2	88
41	Genetic variation and evolutionary tradeâ€offs for sexual and asexual reproductive modes in Allium vineale (Liliaceae). American Journal of Botany, 2000, 87, 1769-1777.	1.7	87
42	Microbial phylotype composition and diversity predicts plant productivity and plant–soil feedbacks. Ecology Letters, 2013, 16, 167-174.	6.4	79
43	Mycorrhizal fungi influence global plant biogeography. Nature Ecology and Evolution, 2019, 3, 424-429.	7.8	74
44	The Effect of Restoration Methods on the Quality of the Restoration and Resistance to Invasion by Exotics. Restoration Ecology, 2010, 18, 181-187.	2.9	72
45	Mycorrhizal feedbacks generate positive frequency dependence accelerating grassland succession. Journal of Ecology, 2019, 107, 622-632.	4.0	71
46	Evolutionary history of plant hosts and fungal symbionts predicts the strength of mycorrhizal mutualism. Communications Biology, 2018, 1, 116.	4.4	70
47	Consequences of simultaneous interactions of fungal endophytes and arbuscular mycorrhizal fungi with a shared host grass. Oikos, 2012, 121, 2090-2096.	2.7	67
48	Frequency-dependent feedback constrains plant community coexistence. Nature Ecology and Evolution, 2018, 2, 1403-1407.	7.8	66
49	Coexistence under positive frequency dependence. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 273-277.	2.6	63
50	Plant-soil feedback contributes to intercropping overyielding by reducing the negative effect of take-all on wheat and compensating the growth of faba bean. Plant and Soil, 2017, 415, 1-12.	3.7	63
51	MECHANISMS OF PLANT SPECIES COEXISTENCE: ROLES OF RHIZOSPHERE BACTERIA AND ROOT FUNGAL PATHOGENS. Ecology, 2001, 82, 3285-3294.	3.2	62
52	A novel theory to explain species diversity in landscapes: positive frequency dependence and habitat suitability. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 2389-2393.	2.6	59
53	Evolution of nitrogen fixation in spatially structured populations of Rhizobium. Heredity, 2000, 85, 366-372.	2.6	57
54	<scp>AMF</scp> , phylogeny, and succession: specificity of response to mycorrhizal fungi increases for lateâ€successional plants. Ecosphere, 2016, 7, e01555.	2.2	56

#	Article	IF	CITATIONS
55	Soil microbiome mediates positive plant diversityâ€productivity relationships in late successional grassland species. Ecology Letters, 2019, 22, 1221-1232.	6.4	54
56	Arbuscular mycorrhizal fungi: Hyphal fusion and multigenomic structure. Nature, 2005, 433, E3-E4.	27.8	53
57	Coexistence and relative abundance in plant communities are determined by feedbacks when the scale of feedback and dispersal is local. Journal of Ecology, 2014, 102, 1195-1201.	4.0	53
58	NEGATIVE FREQUENCY DEPENDENCE AND THE IMPORTANCE OF SPATIAL SCALE. Ecology, 2002, 83, 21-27.	3.2	51
59	Negative plantâ€phyllosphere feedbacks in native Asteraceae hosts – a novel extension of the plantâ€soil feedback framework. Ecology Letters, 2017, 20, 1064-1073.	6.4	50
60	Soil microbial legacy drives crop diversity advantage: Linking ecological plant–soil feedback with agricultural intercropping. Journal of Applied Ecology, 2021, 58, 496-506.	4.0	50
61	Genotype, environment, and genotype by environment interactions determine quantitative resistance to leaf rust (Coleosporium asterum) in Euthamia graminifolia (Asteraceae). New Phytologist, 2004, 162, 729-743.	7.3	49
62	Analogous effects of arbuscular mycorrhizal fungi in the laboratory and a North Carolina field. New Phytologist, 2008, 180, 162-175.	7.3	49
63	Partner diversity and identity impacts on plant productivity in <i>Acacia</i> –rhizobial interactions. Journal of Ecology, 2015, 103, 130-142.	4.0	49
64	Nonâ€native plants and soil microbes: potential contributors to the consistent reduction in soil aggregate stability caused by the disturbance of North American grasslands. New Phytologist, 2012, 196, 212-222.	7.3	48
65	Rhizobial mediation of <i>Acacia</i> adaptation to soil salinity: evidence of underlying tradeâ€offs and tests of expected patterns. Journal of Ecology, 2008, 96, 746-755.	4.0	47
66	Sensitivity to <scp>AMF</scp> species is greater in lateâ€successional than earlyâ€successional native or nonnative grassland plants. Ecology, 2019, 100, e02855.	3.2	47
67	Disturbance reduces the differentiation of mycorrhizal fungal communities in grasslands along a precipitation gradient. Ecological Applications, 2018, 28, 736-748.	3.8	45
68	Ecology of Floristic Quality Assessment: testing for correlations between coefficients of conservatism, species traits and mycorrhizal responsiveness. AoB PLANTS, 2018, 10, plx073.	2.3	42
69	The Population Dynamics of Annual Plants and Soil-Borne Fungal Pathogens. Journal of Ecology, 1997, 85, 313.	4.0	40
70	Effect of permafrost thaw on plant and soil fungal community in a boreal forest: Does fungal community change mediate plant productivity response?. Journal of Ecology, 2019, 107, 1737-1752.	4.0	34
71	Spatial Heterogeneity in Soil Microbes Alters Outcomes of Plant Competition. PLoS ONE, 2015, 10, e0125788.	2.5	32
72	Phylogenetically Structured Differences in rRNA Gene Sequence Variation among Species of Arbuscular Mycorrhizal Fungi and Their Implications for Sequence Clustering. Applied and Environmental Microbiology, 2016, 82, 4921-4930.	3.1	31

#	Article	IF	CITATIONS
73	Genetic variation of morphological characters within a single isolate of the endomycorrhizal fungus Glomus clarum (Glomaceae). American Journal of Botany, 1997, 84, 1211-1216.	1.7	30
74	Belowâ€groundâ€mediated and phaseâ€dependent processes drive nitrogenâ€evoked community changes in grasslands. Journal of Ecology, 2020, 108, 1874-1887.	4.0	29
75	Open access increases citations of papers in ecology. Ecosphere, 2017, 8, e01887.	2.2	28
76	Plant-soil feedbacks promote coexistence and resilience in multi-species communities. PLoS ONE, 2019, 14, e0211572.	2.5	28
77	Spatio-temporal community dynamics induced by frequency dependent interactions. Ecological Modelling, 2006, 197, 133-147.	2.5	27
78	Perennial, but not annual legumes synergistically benefit from infection with arbuscular mycorrhizal fungi and rhizobia: a metaâ€analysis. New Phytologist, 2022, 233, 505-514.	7.3	27
79	Root pathogen diversity and composition varies with climate in undisturbed grasslands, but less so in anthropogenically disturbed grasslands. ISME Journal, 2021, 15, 304-317.	9.8	26
80	Pathogens and Mutualists as Joint Drivers of Host Species Coexistence and Turnover: Implications for Plant Competition and Succession. American Naturalist, 2020, 195, 591-602.	2.1	23
81	Microbiome influence on host community dynamics: Conceptual integration of microbiome feedback with classical host–microbe theory. Ecology Letters, 2021, 24, 2796-2811.	6.4	22
82	Utility of large subunit for environmental sequencing of arbuscular mycorrhizal fungi: a new reference database and pipeline. New Phytologist, 2021, 229, 3048-3052.	7.3	20
83	Evolutionary history shapes patterns of mutualistic benefit in Acacia –rhizobial interactions. Evolution; International Journal of Organic Evolution, 2016, 70, 1473-1485.	2.3	18
84	A nucleation framework for transition between alternate states: short ircuiting barriers to ecosystem recovery. Ecology, 2020, 101, e03099.	3.2	18
85	Climate Affects Plant-Soil Feedback of Native and Invasive Grasses: Negative Feedbacks in Stable but Not in Variable Environments. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	17
86	Native plant abundance, diversity, and richness increases in prairie restoration with field inoculation density of native mycorrhizal amendments. Restoration Ecology, 2020, 28, S373.	2.9	17
87	Community context for mechanisms of disease dilution: insights from linking epidemiology and plant–soil feedback theory. Annals of the New York Academy of Sciences, 2020, 1469, 65-85.	3.8	16
88	Environmental identification of arbuscular mycorrhizal fungi using the LSU rDNA gene region: an expanded database and improved pipeline. Mycorrhiza, 2022, 32, 145-153.	2.8	16
89	Asymmetric facilitation induced by inoculation with arbuscular mycorrhizal fungi leads to overyielding in maize/faba bean intercropping. Journal of Plant Interactions, 2019, 14, 10-20.	2.1	14
90	Advancing Synthetic Ecology: A Database System to Facilitate Complex Ecological Meta-Analyses. Bulletin of the Ecological Society of America, 2010, 91, 235-243.	0.2	13

#	Article	IF	CITATIONS
91	Biochar soil amendments in prairie restorations do not interfere with benefits from inoculation with native arbuscular mycorrhizal fungi. Restoration Ecology, 2020, 28, 785-795.	2.9	13
92	Are two strategies better than one? Manipulation of seed density and soil community in an experimental prairie restoration. Restoration Ecology, 2019, 27, 1021-1031.	2.9	12
93	Mycorrhizal types influence island biogeography of plants. Communications Biology, 2021, 4, 1128.	4.4	12
94	Sowing density effects and patterns of colonization in a prairie restoration. Restoration Ecology, 2018, 26, 245-254.	2.9	10
95	Plant-soil feedback as a driver of spatial structure in ecosystems. Physics of Life Reviews, 2022, 40, 6-14.	2.8	10
96	Joint Evolution of Kin Recognition and Cooperation in Spatially Structured Rhizobium Populations. PLoS ONE, 2014, 9, e95141.	2.5	9
97	Benefits of Native Mycorrhizal Amendments to Perennial Agroecosystems Increases with Field Inoculation Density. Agronomy, 2019, 9, 353.	3.0	9
98	Symbionts as Filters of Plant Colonization of Islands: Tests of Expected Patterns and Environmental Consequences in the Galapagos. Plants, 2020, 9, 74.	3.5	9
99	Beyond the black box: promoting mathematical collaborations for elucidating interactions in soil ecology. Ecosphere, 2019, 10, e02799.	2.2	8
100	Celebrating INVAM: 35Âyears of the largest living culture collection of arbuscular mycorrhizal fungi. Mycorrhiza, 2021, 31, 117-126.	2.8	7
101	Adaptation of plantâ€mycorrhizal interactions to moisture availability in prairie restoration. Restoration Ecology, 2021, 29, .	2.9	7
102	Mechanisms of Plant Species Coexistence: Roles of Rhizosphere Bacteria and Root Fungal Pathogens. Ecology, 2001, 82, 3285.	3.2	7
103	Native mycorrhizal fungi improve milkweed growth, latex, and establishment while some commercial fungi may inhibit them. Ecosphere, 2022, 13, .	2.2	7
104	Response to Comment on "Conspecific Negative Density Dependence and Forest Diversity― Science, 2012, 338, 469-469.	12.6	5
105	Effect of triploid fitness on the coexistence of diploids and tetraploids. Biological Journal of the Linnean Society, 1997, 60, 95-106.	1.6	5
106	Can Nucleation Bridge to Desirable Alternative Stable States? Theory and Applications. Bulletin of the Ecological Society of America, 2022, 103, e01953.	0.2	2
107	Symbiosis research, technology, and education: Proceedings of the 6th International Symbiosis Society Congress held in Madison Wisconsin, USA, August 2009. Symbiosis, 2010, 51, 1-12.	2.3	1
108	Negative Frequency Dependence and the Importance of Spatial Scale. Ecology, 2002, 83, 21.	3.2	1

#	ARTICLE	IF	CITATIONS
109	Evidence for the evolution of native plant response to mycorrhizal fungi in postâ€agricultural grasslands. Ecology and Evolution, 2022, 12, .	1.9	1
110	Evidence of Adaptation of Little Bluestem to the Local Environment of Central Kansas. Transactions of the Kansas Academy of Science, 2021, 124, .	0.1	0