
Taikan Oki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9128624/publications.pdf Version: 2024-02-01

TAIKAN OKI

#	Article	IF	CITATIONS
1	Global Hydrological Cycles and World Water Resources. Science, 2006, 313, 1068-1072.	6.0	3,042
2	Regions of Strong Coupling Between Soil Moisture and Precipitation. Science, 2004, 305, 1138-1140.	6.0	2,337
3	IAHS Decade on Predictions in Ungauged Basins (PUB), 2003–2012: Shaping an exciting future for the hydrological sciences. Hydrological Sciences Journal, 2003, 48, 857-880.	1.2	982
4	The implications of projected climate change for freshwater resources and their management. Hydrological Sciences Journal, 2008, 53, 3-10.	1.2	668
5	GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. Journal of Hydrometeorology, 2006, 7, 590-610.	0.7	616
6	GSWP-2: Multimodel Analysis and Implications for Our Perception of the Land Surface. Bulletin of the American Meteorological Society, 2006, 87, 1381-1398.	1.7	607
7	Water scarcity assessments in the past, present, and future. Earth's Future, 2017, 5, 545-559.	2.4	545
8	Global potential soil erosion with reference to land use and climate changes. Hydrological Processes, 2003, 17, 2913-2928.	1.1	534
9	A physically based description of floodplain inundation dynamics in a global river routing model. Water Resources Research, 2011, 47, .	1.7	527
10	An integrated model for the assessment of global water resources – Part 1: Model description and input meteorological forcing. Hydrology and Earth System Sciences, 2008, 12, 1007-1025.	1.9	474
11	The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE). International Journal of Life Cycle Assessment, 2018, 23, 368-378.	2.2	471
12	Multimodel Estimate of the Global Terrestrial Water Balance: Setup and First Results. Journal of Hydrometeorology, 2011, 12, 869-884.	0.7	466
13	A reservoir operation scheme for global river routing models. Journal of Hydrology, 2006, 327, 22-41.	2.3	353
14	Design of Total Runoff Integrating Pathways (TRIP)—A Global River Channel Network. Earth Interactions, 1998, 2, 1-37.	0.7	352
15	Global projections of changing risks of floods and droughts in a changing climate. Hydrological Sciences Journal, 2008, 53, 754-772.	1.2	347
16	An integrated model for the assessment of global water resources – Part 2: Applications and assessments. Hydrology and Earth System Sciences, 2008, 12, 1027-1037.	1.9	341
17	Impact of Climate Change on River Discharge Projected by Multimodel Ensemble. Journal of Hydrometeorology, 2006, 7, 1076-1089.	0.7	338
18	GLACE: The Global Land–Atmosphere Coupling Experiment. Part II: Analysis. Journal of Hydrometeorology, 2006, 7, 611-625.	0.7	337

#	Article	IF	CITATIONS
19	Historical isotope simulation using Reanalysis atmospheric data. Journal of Geophysical Research, 2008, 113, .	3.3	328
20	Does higher surface temperature intensify extreme precipitation?. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	290
21	Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century. Nature Communications, 2017, 8, 15697.	5.8	287
22	An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model. Journal of Hydrology, 2010, 384, 232-244.	2.3	284
23	Impact of vegetation coverage on regional water balance in the nonhumid regions of China. Water Resources Research, 2009, 45, .	1.7	254
24	Assessment of Annual Runoff from Land Surface Models Using Total Runoff Integrating Pathways (TRIP). Journal of the Meteorological Society of Japan, 1999, 77, 235-255.	0.7	244
25	Incorporating Anthropogenic Water Regulation Modules into a Land Surface Model. Journal of Hydrometeorology, 2012, 13, 255-269.	0.7	226
26	Virtual water trade and world water resources. Water Science and Technology, 2004, 49, 203-209.	1.2	204
27	Model estimates of sea-level change due toÂanthropogenic impacts on terrestrial waterÂstorage. Nature Geoscience, 2012, 5, 389-392.	5.4	201
28	Global Change Observation Mission (GCOM) for Monitoring Carbon, Water Cycles, and Climate Change. Proceedings of the IEEE, 2010, 98, 717-734.	16.4	198
29	Global assessment of current water resources using total runoff integrating pathways. Hydrological Sciences Journal, 2001, 46, 983-995.	1.2	193
30	Characteristics of the 2011 Chao Phraya River flood in Central Thailand. Hydrological Research Letters, 2012, 6, 41-46.	0.3	178
31	Human–water interface in hydrological modelling: current status and future directions. Hydrology and Earth System Sciences, 2017, 21, 4169-4193.	1.9	171
32	Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa. Nature, 2019, 572, 230-234.	13.7	168
33	Projection of future world water resources under SRES scenarios: water withdrawal / Projection des ressources en eau mondiales futures selon les scénarios du RSSE: prélÃ`vement d'eau. Hydrological Sciences Journal, 2008, 53, 11-33.	1.2	164
34	Incorporation of groundwater pumping in a global Land Surface Model with the representation of human impacts. Water Resources Research, 2015, 51, 78-96.	1.7	162
35	Global atmospheric water balance and runoff from large river basins. Hydrological Processes, 1995, 9, 655-678.	1.1	158
36	Understanding the LCA and ISO water footprint: A response to Hoekstra (2016) "A critique on the water-scarcity weighted water footprint in LCA― Ecological Indicators, 2017, 72, 352-359.	2.6	158

#	Article	IF	CITATIONS
37	Seasonal Change of the Diurnal Cycle of Precipitation over Japan and Malaysia. Journal of Applied Meteorology and Climatology, 1994, 33, 1445-1463.	1.7	152
38	LS3MIP (v1.0) contribution to CMIP6: the Land Surface, Snow and Soil moisture Model Intercomparison Project – aims, setup and expected outcome. Geoscientific Model Development, 2016, 9, 2809-2832.	1.3	152
39	Variations of global and continental water balance components as impacted by climate forcing uncertainty and human water use. Hydrology and Earth System Sciences, 2016, 20, 2877-2898.	1.9	151
40	Impact of Deforestation on Regional Precipitation over the Indochina Peninsula. Journal of Hydrometeorology, 2001, 2, 51-70.	0.7	145
41	The Basic Performance of a Precipitation Retrieval Algorithm for the Global Precipitation Measurement Mission's Single/Dual-Frequency Radar Measurements. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51, 5239-5251.	2.7	142
42	Role of rivers in the seasonal variations of terrestrial water storage over global basins. Geophysical Research Letters, 2009, 36, .	1.5	140
43	Intercomparison of biasâ€correction methods for monthly temperature and precipitation simulated by multiple climate models. Journal of Geophysical Research, 2012, 117, .	3.3	134
44	Spatial and temporal variation in nutrient parameters in stream water in a rural-urban catchment, Shikoku, Japan: Effects of land cover and human impact. Journal of Environmental Management, 2011, 92, 1837-1848.	3.8	125
45	Integrating risks of climate change into water management. Hydrological Sciences Journal, 2015, 60, 4-13.	1.2	119
46	Investigating the roles of climate seasonality and landscape characteristics on mean annual and monthly water balances. Journal of Hydrology, 2008, 357, 255-269.	2.3	116
47	Assessment of global nitrogen pollution in rivers using an integrated biogeochemical modeling framework. Water Research, 2011, 45, 2573-2586.	5.3	115
48	The Influence of Precipitation Variability and Partial Irrigation within Grid Cells on a Hydrological Simulation. Journal of Hydrometeorology, 2007, 8, 499-512.	0.7	114
49	Deriving a global river network map and its sub-grid topographic characteristics from a fine-resolution flow direction map. Hydrology and Earth System Sciences, 2009, 13, 2241-2251.	1.9	110
50	Hydrological Cycles Change in the Yellow River Basin during the Last Half of the Twentieth Century. Journal of Climate, 2008, 21, 1790-1806.	1.2	109
51	Adjustment of a spaceborne DEM for use in floodplain hydrodynamic modeling. Journal of Hydrology, 2012, 436-437, 81-91.	2.3	107
52	Assessing the impacts of reservoir operation to floodplain inundation by combining hydrological, reservoir management, and hydrodynamic models. Water Resources Research, 2014, 50, 7245-7266.	1.7	106
53	A quantitative analysis of short-term18O variability with a Rayleigh-type isotope circulation model. Journal of Geophysical Research, 2003, 108, .	3.3	98
54	The Water Planetary Boundary: Interrogation and Revision. One Earth, 2020, 2, 223-234.	3.6	98

#	Article	IF	CITATIONS
55	A grid-based assessment of global water scarcity including virtual water trading. Water Resources Management, 2006, 21, 19-33.	1.9	96
56	Analysis of the water level dynamics simulated by a global river model: A case study in the Amazon River. Water Resources Research, 2012, 48, .	1.7	94
57	Globalâ€scale land surface hydrologic modeling with the representation of water table dynamics. Journal of Geophysical Research D: Atmospheres, 2014, 119, 75-89.	1.2	93
58	Colored Moisture Analysis Estimates of Variations in 1998 Asian Monsoon Water Sources. Journal of the Meteorological Society of Japan, 2004, 82, 1315-1329.	0.7	87
59	Illuminating water cycle modifications and Earth system resilience in the Anthropocene. Water Resources Research, 2020, 56, e2019WR024957.	1.7	86
60	Worldwide evaluation of mean and extreme runoff from six global-scale hydrological models that account for human impacts. Environmental Research Letters, 2018, 13, 065015.	2.2	85
61	Iso-MATSIRO, a land surface model that incorporates stable water isotopes. Global and Planetary Change, 2006, 51, 90-107.	1.6	82
62	The timing of unprecedented hydrological drought under climate change. Nature Communications, 2022, 13, .	5.8	77
63	A SRES-based gridded global population dataset for 1990–2100. Population and Environment, 2007, 28, 113-131.	1.3	71
64	Evapotranspiration seasonality across the Amazon Basin. Earth System Dynamics, 2017, 8, 439-454.	2.7	71
65	A 100-year (1901–2000) global retrospective estimation of the terrestrial water cycle. Journal of Geophysical Research, 2005, 110, .	3.3	68
66	Event-to-event intensification of the hydrologic cycle from 1.5 °C to a 2 °C warmer world. Scientific Reports, 2019, 9, 3483.	1.6	67
67	Multi-scale model analysis of boundary layer ozone over East Asia. Atmospheric Chemistry and Physics, 2009, 9, 3277-3301.	1.9	66
68	Long-range transport of acidifying substances in East Asia—Part IISource–receptor relationships. Atmospheric Environment, 2008, 42, 5956-5967.	1.9	63
69	Dynamics of Terrestrial Water Storage Change from Satellite and Surface Observations and Modeling. Journal of Hydrometeorology, 2010, 11, 156-170.	0.7	63
70	Design of Total Runoff Integrating Pathways (TRIP)—A Global River Channel Network. Earth Interactions, 0, 2, 1-1.	0.7	63
71	Water Conflict Risk due to Water Resource Availability and Unequal Distribution. Water Resources Management, 2014, 28, 169-184.	1.9	59
72	Was the Risk from Nursing-Home Evacuation after the Fukushima Accident Higher than the Radiation Risk?. PLoS ONE, 2015, 10, e0137906.	1.1	58

#	Article	IF	CITATIONS
73	Economically challenged and water scarce: identification of global populations most vulnerable to water crises. International Journal of Water Resources Development, 2020, 36, 416-428.	1.2	58
74	Dynamics of surface water storage in the Amazon inferred from measurements of interâ€satellite distance change. Geophysical Research Letters, 2009, 36, .	1.5	56
75	Changes in Hourly Heavy Precipitation at Tokyo from 1890 to 1999. Journal of the Meteorological Society of Japan, 2004, 82, 241-247.	0.7	53
76	Rainfall Amount, Intensity, Duration, and Frequency Relationships in the Mae Chaem Watershed in Southeast Asia. Journal of Hydrometeorology, 2004, 5, 458-470.	0.7	52
77	Interannual variability of H ₂ ¹⁸ O in precipitation over the Asian monsoon region. Journal of Geophysical Research, 2012, 117, .	3.3	52
78	Estimating monthly total nitrogen concentration in streams by using artificial neural network. Journal of Environmental Management, 2011, 92, 172-177.	3.8	51
79	Relative contributions of weather systems to mean and extreme global precipitation. Journal of Geophysical Research D: Atmospheres, 2017, 122, 152-167.	1.2	51
80	Dependence of economic impacts of climate change on anthropogenically directed pathways. Nature Climate Change, 2019, 9, 737-741.	8.1	49
81	Decreasing precipitation extremes at higher temperatures in tropical regions. Natural Hazards, 2012, 64, 935-941.	1.6	48
82	Representing Variability in Subgrid Snow Cover and Snow Depth in a Global Land Model: Offline Validation. Journal of Climate, 2014, 27, 3318-3330.	1.2	48
83	Global runoff routing with the hydrological component of the ECMWF NWP system. International Journal of Climatology, 2010, 30, 2155-2174.	1.5	47
84	The Effect of Global Warming on Future Water Availability: CMIP5 Synthesis. Water Resources Research, 2018, 54, 7791-7819.	1.7	47
85	Evaluation of Risk Perception and Risk-Comparison Information Regarding Dietary Radionuclides after the 2011 Fukushima Nuclear Power Plant Accident. PLoS ONE, 2016, 11, e0165594.	1.1	46
86	Economic aspects of virtual water trade. Environmental Research Letters, 2017, 12, 044002.	2.2	44
87	Water Scarcity Footprints by Considering the Differences in Water Sources. Sustainability, 2015, 7, 9753-9772.	1.6	43
88	Water Governance Contribution to Water and Sanitation Access Equality in Developing Countries. Water Resources Research, 2020, 56, e2019WR025330.	1.7	43
89	Agrometeorological conditions of grassland vegetation in central Mongolia and their impact for leaf area growth. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	42
90	Projection of future world water resources under SRES scenarios: an integrated assessment. Hydrological Sciences Journal, 2014, 59, 1775-1793.	1.2	42

#	Article	IF	CITATIONS
91	Application of performance metrics to climate models for projecting future river discharge in the Chao Phraya River basin. Hydrological Research Letters, 2014, 8, 33-38.	0.3	40
92	How global targets on drinking water were developed and achieved. Nature Sustainability, 2019, 2, 429-434.	11.5	40
93	A framework for the cross-sectoral integration of multi-model impact projections: land use decisions under climate impacts uncertainties. Earth System Dynamics, 2015, 6, 447-460.	2.7	38
94	Visioneering: an essential framework in sustainability science. Sustainability Science, 2011, 6, 247-251.	2.5	36
95	A review of climate-change impact and adaptation studies for the water sector in Thailand. Environmental Research Letters, 2021, 16, 023004.	2.2	36
96	Re-evaluation of future water stress due to socio-economic and climate factors under a warming climate. Hydrological Sciences Journal, 2015, 60, 14-29.	1.2	35
97	Contrail observations over Southern and Eastern Asia in NOAA/AVHRR data and comparisons to contrail simulations in a GCM. International Journal of Remote Sensing, 2007, 28, 2049-2069.	1.3	34
98	A spatial analysis of hydroâ€climatic and vegetation condition trends in the Yellow River basin. Hydrological Processes, 2008, 22, 451-458.	1.1	34
99	Disruption of hydroecological equilibrium in southwest Amazon mediated by drought. Geophysical Research Letters, 2015, 42, 7546-7553.	1.5	34
100	Long-range transport of acidifying substances in East Asia—Part IModel evaluation and sensitivity studies. Atmospheric Environment, 2008, 42, 5939-5955.	1.9	33
101	Toward flood risk prediction: a statistical approach using a 29-year river discharge simulation over Japan. Hydrological Research Letters, 2008, 2, 22-26.	0.3	32
102	Modelling the catchment-scale environmental impacts of wastewater treatment in an urban sewage system for CO2 emission assessment. Water Science and Technology, 2010, 62, 972-984.	1.2	32
103	Probability assessment of flood and sediment disasters in Japan using the Total Runoff-Integrating Pathways model. International Journal of Disaster Risk Reduction, 2013, 3, 31-43.	1.8	32
104	Impacts of spatial resolution and representation of flow connectivity on large-scale simulation of floods. Hydrology and Earth System Sciences, 2017, 21, 5143-5163.	1.9	32
105	Influence of "Realistic―Land Surface Wetness on Predictability of Seasonal Precipitation in Boreal Summer. Journal of Climate, 2006, 19, 1450-1460.	1.2	30
106	Estimated Dietary Intake of Radionuclides and Health Risks for the Citizens of Fukushima City, Tokyo, and Osaka after the 2011 Nuclear Accident. PLoS ONE, 2014, 9, e112791.	1.1	30
107	Spatial rainfall distribution at a storm event in mountainous regions, estimated by orography and wind direction. Water Resources Research, 1991, 27, 359-369.	1.7	29
108	Seasonal cycle of water storage in major river basins of the world. Geophysical Research Letters, 2001, 28, 3215-3218.	1.5	29

#	Article	IF	CITATIONS
109	The Seasonal Change of the Water Budget in the Congo River Basin. Journal of the Meteorological Society of Japan, 1994, 72, 281-299.	0.7	28
110	Off-line simulation of the Amazon water balance: a sensitivity study with implications for GSWP. Climate Dynamics, 2002, 19, 141-154.	1.7	28
111	Development of a global flood risk index based on natural and socio-economic factors. Hydrological Sciences Journal, 2011, 56, 789-804.	1.2	28
112	Modeling reservoir sedimentation associated with an extreme flood and sediment flux in a mountainous granitoid catchment, Japan. Geomorphology, 2011, 125, 263-270.	1.1	28
113	Movement of Amazon surface water from timeâ€variable satellite gravity measurements and implications for water cycle parameters in land surface models. Geochemistry, Geophysics, Geosystems, 2010, 11, .	1.0	27
114	Estimation of thyroid doses and health risks resulting from the intake of radioactive iodine in foods and drinking water by the citizens of Tokyo after the Fukushima nuclear accident. Chemosphere, 2012, 87, 1355-1360.	4.2	27
115	Water Balance within Intensively Cultivated Alluvial Plain in an Arid Environment. Water Resources Management, 2007, 21, 1703-1715.	1.9	26
116	Assessing environmental improvement options from a water quality perspective for an urban–rural catchment. Environmental Modelling and Software, 2012, 32, 16-26.	1.9	26
117	Assessment of Chlorophyll-a Algorithms Considering Different Trophic Statuses and Optimal Bands. Sensors, 2017, 17, 1746.	2.1	26
118	Diurnal variation of precipitation by moving mesoscale systems: Radar observations in northern Thailand. Geophysical Research Letters, 2003, 30, .	1.5	25
119	Evaluation of two-dimensional atmospheric water circulation fields in reanalyses by using precipitation isotopes databases. Journal of Geophysical Research, 2004, 109, .	3.3	25
120	On the relationship between the Bowen ratio and the near-surface air temperature. Theoretical and Applied Climatology, 2012, 108, 135-145.	1.3	24
121	Visualizing the Interconnections Among Climate Risks. Earth's Future, 2019, 7, 85-100.	2.4	24
122	Application of the Simple Biosphere Model(SiB2) to a Paddy Field for a Period of Growing Season in GAME-Tropics Journal of the Meteorological Society of Japan, 2001, 79, 387-400.	0.7	23
123	Application of RUSLE Model on Global Soil Erosion Estimate. Proceedings of Hydraulic Engineering, 2001, 45, 811-816.	0.0	23
124	Discharge of large Asian rivers – Observations and projections. Quaternary International, 2009, 208, 4-10.	0.7	23
125	Future projection of mean river discharge climatology for the Chao Phraya River basin. Hydrological Research Letters, 2013, 7, 36-41.	0.3	23
126	Simulation of potential impacts of land use/cover changes on surface water fluxes in the Chaophraya river basin, Thailand. Journal of Geophysical Research, 2005, 110, .	3.3	22

#	Article	IF	CITATIONS
127	A DISTRIBUTED BIOSPHERE HYDROLOGICAL MODEL (DBHM) FOR LARGE RIVER BASIN. Proceedings of Hydraulic Engineering, 2006, 50, 37-42.	0.0	22
128	Using remotely sensed imagery to estimate potential annual pollutant loads in river basins. Water Science and Technology, 2009, 60, 2009-2015.	1.2	22
129	Estimation of the effects of chemically-enhanced treatment of urban sewage system based on life-cycle management. Sustainable Cities and Society, 2013, 9, 23-31.	5.1	22
130	The Diurnal Cycle of Precipitation in Regional Spectral Model Simulations over West Africa: Sensitivities to Resolution and Cumulus Schemes. Weather and Forecasting, 2015, 30, 424-445.	0.5	22
131	Evaluation of MERIS Chlorophyll-a Retrieval Processors in a Complex Turbid Lake Kasumigaura over a 10-Year Mission. Remote Sensing, 2017, 9, 1022.	1.8	22
132	Paradigm Shifts on Flood Risk Management in Japan: Detecting Triggers of Design Flood Revisions in the Modern Era. Water Resources Research, 2018, 54, 5504-5515.	1.7	22
133	Estimation of Predictability with a Newly Derived Index to Quantify Similarity among Ensemble Members. Monthly Weather Review, 2007, 135, 2674-2687.	0.5	21
134	Statistical model for economic damage from pluvial floods in Japan using rainfall data and socioeconomic parameters. Natural Hazards and Earth System Sciences, 2016, 16, 1063-1077.	1.5	21
135	Which weather systems are projected to cause future changes in mean and extreme precipitation in CMIP5 simulations?. Journal of Geophysical Research D: Atmospheres, 2016, 121, 10,522.	1.2	21
136	Advanced Rain/No-Rain Classification Methods for Microwave Radiometer Observations over Land. Journal of Applied Meteorology and Climatology, 2008, 47, 3016-3029.	0.6	20
137	Long-term changes in flood event patterns due to changes in hydrological distribution parameters in a rural–urban catchment, Shikoku, Japan. Atmospheric Research, 2011, 101, 164-177.	1.8	20
138	Application of temperature, water stress, CO2 in rice growth models. Rice, 2012, 5, 10.	1.7	20
139	Characteristics of aerosol and cloud particle size distributions in the tropical tropopause layer measured with optical particle counter and lidar. Atmospheric Chemistry and Physics, 2007, 7, 3507-3518.	1.9	19
140	Estimation of total nitrogen transport and retention during flow in a catchment using a mass balance model incorporating the effects of land cover distribution and human activity information. Water Science and Technology, 2010, 62, 1837-1847.	1.2	19
141	The Offline Validation of Land Surface Models. Journal of the Meteorological Society of Japan, 1999, 77, 257-263.	0.7	18
142	Testing the hypothesis on the relationship between aerodynamic roughness length and albedo using vegetation structure parameters. International Journal of Biometeorology, 2012, 56, 411-418.	1.3	18
143	Multi-Algorithm Indices and Look-Up Table for Chlorophyll-a Retrieval in Highly Turbid Water Bodies Using Multispectral Data. Remote Sensing, 2017, 9, 556.	1.8	18
144	Principal condition for the earliest Asian summer monsoon onset. Geophysical Research Letters, 2002, 29, 36-1-36-4.	1.5	17

#	Article	lF	CITATIONS
145	The global water cycle. Geophysical Monograph Series, 2004, , 225-237.	0.1	17
146	Integrated biogeochemical modelling of nitrogen load from anthropogenic and natural sources in Japan. Ecological Modelling, 2009, 220, 2325-2334.	1.2	17
147	Modeling shallow landslides and river bed variation associated with extreme rainfall-runoff events in a granitoid mountainous forested catchment in Japan. Geomorphology, 2011, 125, 282-292.	1.1	17
148	Extreme precipitation intensity in future climates associated with the Clausius-Clapeyron-like relationship. Hydrological Research Letters, 2014, 8, 108-113.	0.3	17
149	Development of a Global River Water Temperature Model Considering Fluvial Dynamics and Seasonal Freezeâ€Thaw Cycle. Water Resources Research, 2019, 55, 1366-1383.	1.7	17
150	Application of Distributed Hydrological Model in the Asian Monsoon Tropic Region with a Perspective of Coupling with Atmospheric Models Journal of the Meteorological Society of Japan, 2001, 79, 373-385.	0.7	16
151	Groundwater recharge and discharge in a hyperarid alluvial plain (Akesu, Taklimakan Desert, China). Hydrological Processes, 2007, 21, 1345-1353.	1.1	16
152	Water and climate projections. Hydrological Sciences Journal, 2009, 54, 406-415.	1.2	16
153	Climatological characteristics of fronts in the western North Pacific based on surface weather charts. Journal of Geophysical Research D: Atmospheres, 2014, 119, 9400-9418.	1.2	16
154	Decontamination Reduces Radiation Anxiety and Improves Subjective Well-Being after the Fukushima Accident. Tohoku Journal of Experimental Medicine, 2017, 241, 103-116.	0.5	16
155	AMSR instruments on GCOM-W1/2: Concepts and applications. , 2010, , .		15
156	Analysis of stream water quality and estimation of nutrient load with the aid of Quick Bird remote sensing imagery. Hydrological Sciences Journal, 2012, 57, 850-860.	1.2	15
157	Assessing the effects of consecutive sediment-control dams using a numerical hydraulic experiment to model river-bed variation. Catena, 2013, 104, 174-185.	2.2	15
158	Seasonal variation of land–atmosphere coupling strength over the West African monsoon region in an atmospheric general circulation model. Hydrological Sciences Journal, 2013, 58, 1276-1286.	1.2	15
159	Sensitivity of Global Hydrological Simulations to Groundwater Capillary Flux Parameterizations. Water Resources Research, 2019, 55, 402-425.	1.7	15
160	Validating Estimates of Land Surface Parameterizations by Annual Discharge using Total Runoff Integrating Pathways Suimon Mizu Shigen Gakkaishi, 1997, 10, 416-425.	0.1	14
161	Improving Understanding of the Global Hydrologic Cycle. , 2013, , 151-184.		14
162	Advancing Precipitation Estimation, Prediction, and Impact Studies. Bulletin of the American Meteorological Society, 2020, 101, E1584-E1592.	1.7	14

#	Article	IF	CITATIONS
163	An Evaluation of Over-Land Rain Rate Estimates by the GSMaP and GPROF Algorithms: The Role of Lower-Frequency Channels. Journal of the Meteorological Society of Japan, 2009, 87A, 183-202.	0.7	14
164	Hydrograph estimations by flow routing modelling from AGCM output in major basins of the world. Proceedings of Hydraulic Engineering, 1995, 39, 97-102.	0.0	14
165	Ecological and hydrological responses to climate change in an urban-forested catchment, Nagara River basin, Japan. Urban Climate, 2012, 1, 40-54.	2.4	13
166	Assessment of potential suspended sediment yield in Japan in the 21st century with reference to the general circulation model climate change scenarios. Global and Planetary Change, 2013, 102, 1-9.	1.6	13
167	Long-term analysis of evapotranspiration over a diverse land use area in northern Thailand. Hydrological Research Letters, 2014, 8, 45-50.	0.3	13
168	Evaluation of Extreme Rain Estimates in the TRMM/PR Standard Product Version 7 Using High-Temporal-Resolution Rain Gauge Datasets over Japan. Scientific Online Letters on the Atmosphere, 2013, 9, 98-101.	0.6	13
169	Classification of Vertical Wind Speed Profiles Observed Above a Sloping Forest at Nighttime Using the Bulk Richardson Number. Boundary-Layer Meteorology, 2005, 115, 205-221.	1.2	12
170	Land Use and Land Cover Changes and Their Impacts on Hydroclimate, Ecosystems and Society. , 2013, , 185-203.		12
171	Applicability of a nationwide flood forecasting system for Typhoon Hagibis 2019. Scientific Reports, 2021, 11, 10213.	1.6	12
172	Toward hyper-resolution global hydrological models including human activities: application to Kyushu island, Japan. Hydrology and Earth System Sciences, 2022, 26, 1953-1975.	1.9	12
173	Occurrence and partition ratios of radiocesium in an urban river during dry and wet weather after the 2011 nuclear accident in Fukushima. Water Research, 2016, 92, 87-93.	5.3	11
174	Changes in Flood Risk under Global Warming Estimated Using MIROC5 and the Discharge Probability Index. Journal of the Meteorological Society of Japan, 2012, 90, 509-524.	0.7	11
175	Impact of climate forcing uncertainty and human water use on global and continental water balance components. Proceedings of the International Association of Hydrological Sciences, 0, 374, 53-62.	1.0	11
176	The effects of heterogeneity within an area on areally averaged evaporation. Hydrological Processes, 2000, 14, 465-479.	1.1	10
177	The effect of estimated PAR uncertainties on the physiological processes of biosphere models. Ecological Modelling, 2010, 221, 1575-1579.	1.2	10
178	Modelling sewer sediment deposition, erosion, and transport processes to predict acute influent and reduce combined sewer overflows and CO2 emissions. Water Science and Technology, 2010, 62, 2346-2356.	1.2	10
179	A study on the relationship between Atlantic sea surface temperature and Amazonian greenness. Ecological Informatics, 2010, 5, 367-378.	2.3	10
180	The onset of the West African monsoon simulated in a highâ€resolution atmospheric general circulation model with reanalyzed soil moisture fields. Atmospheric Science Letters, 2012, 13, 103-107.	0.8	10

#	Article	IF	CITATIONS
181	<i>FluxPro</i> as a realtime monitoring and surveilling system for eddy covariance flux measurement. J Agricultural Meteorology, 2015, 71, 32-50.	0.8	10
182	How Achieving the Millennium Development Goals Increases Subjective Well-Being in Developing Nations. Sustainability, 2016, 8, 189.	1.6	10
183	Pre-Monsoon Rain and Its Relationship with Monsoon Onset over the Indochina Peninsula. Frontiers in Earth Science, 0, 4, .	0.8	10
184	Long-distance transport of radioactive plume by nocturnal local winds. Scientific Reports, 2016, 6, 36584.	1.6	10
185	Optimal Multi-Sectoral Water Resources Allocation Based on Economic Evaluation Considering the Environmental Flow Requirements: A Case Study of Yellow River Basin. Water (Switzerland), 2021, 13, 2253.	1.2	10
186	The effects of annual precipitation and mean air temperature on annual runoff in global forest regions. Climatic Change, 2011, 108, 401-410.	1.7	9
187	Status of AMSR2 on GCOM-W1. Proceedings of SPIE, 2012, , .	0.8	9
188	Assessment of the historical environmental changes from a survey of local residents in an urban–rural catchment. Ecological Complexity, 2013, 15, 83-96.	1.4	9
189	The effects of country-level population policy for enhancing adaptation to climate change. Hydrology and Earth System Sciences, 2013, 17, 4429-4440.	1.9	9
190	Application of Satellite-Derived Surface Soil Moisture Data to Simulating Seasonal Precipitation by a Simple Soil Moisture Transfer Method. Journal of Hydrometeorology, 2003, 4, 929-943.	0.7	8
191	A modelâ€based test of accuracy of seawater oxygen isotope ratio record derived from a coral dual proxy method at southeastern Luzon Island, the Philippines. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 853-859.	1.3	8
192	Potential Impacts of Food Production on Freshwater Availability Considering Water Sources. Water (Switzerland), 2016, 8, 163.	1.2	8
193	Impacts of climate and land use changes on river discharge in a small watershed: a case study of the Lam Chi subwatershed, northeast Thailand. Hydrological Research Letters, 2018, 12, 7-13.	0.3	8
194	Point Precipitation Observation Extremes in the World and Japan. Suimon Mizu Shigen Gakkaishi, 2010, 23, 231-247.	0.1	8
195	Global Hydrological Cycle and World Water Resources. Membrane, 2003, 28, 206-214.	0.0	8
196	Applicability of ECMWF's 4DDA Data to the Interannual Variability of the Water Budget of the Mississippi River Basin. Journal of the Meteorological Society of Japan, 1995, 73, 1167-1174.	0.7	7
197	Estimating Plecoglossus altivelis altivelis migration using a mass balance model expressed by hydrological distribution parameters in a major limpid river basin in Japan. Ecological Modelling, 2010, 221, 2808-2815.	1.2	7
198	Difference in the Priestley–Taylor coefficients at two different heights of a tall micrometeorological tower. Agricultural and Forest Meteorology, 2013, 180, 97-101.	1.9	7

#	Article	IF	CITATIONS
199	Chronological Development of Terrestrial Mean Precipitation. Bulletin of the American Meteorological Society, 2017, 98, 2411-2428.	1.7	7
200	Land surface monitoring by backscattering coefficient from TRMM/PR 2A21. , 0, , .		6
201	Daily NDVI Relationship to Cloud Cover. Journal of Applied Meteorology and Climatology, 2007, 46, 377-387.	0.6	6
202	DEVELOPMENT AND VERIFICATION OF A PREDICTING SYSTEM OF RIVER DISCHARGE OVER JAPAN JMA-MSM-GPV. Proceedings of Hydraulic Engineering, 2007, 51, 403-408.	0.0	6
203	Estimation of global annual river runoff based on atmospheric water balance. Proceedings of Hydraulic Engineering, 1992, 36, 573-578.	0.0	5
204	Validation of the output from JMA-SiB using the combined water balance method and a river routing scheme: A case study in the Mackenzie River basin. Journal of Geophysical Research, 1999, 104, 31199-31206.	3.3	5
205	Current Situation and Future Perspectives on Global Hydrologic Cycles, Water Balances, and World Freshwater Resources. Journal of Geography (Chigaku Zasshi), 2007, 116, 31-42.	0.1	5
206	Tolerance of eddy covariance flux measurement. Hydrological Research Letters, 2011, 5, 73-77.	0.3	5
207	Status of GCOM-W1/AMSR2 development, algorithms, and products. Proceedings of SPIE, 2011, , .	0.8	5
208	Estimating the collapse of aggregated fine soil structure in a mountainous forested catchment. Journal of Environmental Management, 2014, 138, 24-31.	3.8	5
209	The Effects of Five Forms of Capital on Thought Processes Underlying Water Consumption Behavior in Suburban Vientiane. Sustainability, 2016, 8, 538.	1.6	5
210	Towards the incorporation of tipping elements in global climate risk management: probability and potential impacts of passing a threshold. Sustainability Science, 2018, 13, 315-328.	2.5	5
211	Development of a coupled simulation framework representing the lake and river continuum of mass and energy (TCHOIR v1.0). Geoscientific Model Development, 2021, 14, 5669-5693.	1.3	5
212	Aggregation criteria for surface heat balances in a heterogeneous area based on a linear model. Advances in Water Resources, 2001, 24, 1159-1171.	1.7	4
213	A grid-based assessment of global water scarcity including virtual water trading. , 2006, , 19-33.		4
214	Reply to 'Overestimated water storage'. Nature Geoscience, 2013, 6, 3-4.	5.4	4
215	Bias correction techniques for meteorological data of A2 scenario climate model output in Chao Phraya River Basin of Thailand. Hydrological Research Letters, 2014, 8, 71-76.	0.3	4
216	SIMULATION OF RADIOACTIVE TRACER TRANSPORT USING ISORSM AND UNCERTAINTY ANALYSES. Journal of Japan Society of Civil Engineers, 2015, 3, 60-66.	0.1	4

#	Article	IF	CITATIONS
217	Sensitivity of subregional distribution of socioeconomic conditions to the global assessment of water scarcity. Communications Earth & Environment, 2022, 3, .	2.6	4
218	Time for a Change in Japanese Water Resources Policy, Part 2: Towards a Planning and Management Framework for Adapting to Changes. International Journal of Water Resources Development, 2009, 25, 565-570.	1.2	3
219	Toward global-scale data assimilation using SWOT: Requirements for global hydrodynamics models. , 2011, , .		3
220	GLOBAL SIMULATION OF GROUNDWATER RECHARGE, WATER TABLE DEPTH, AND LOW FLOW USING A LAND SURFACE MODEL WITH GROUNDWATER REPRESENTATION. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2012, 68, I_211-I_216.	0.0	3
221	A new rain detection method to complement high-resolution global precipitation products. Hydrological Research Letters, 2012, 6, 82-86.	0.3	3
222	Using the sectoral and statistical demand to availability index to assess freshwater scarcity risk and effect of water resource management. Journal of Hydrology X, 2020, 8, 100058.	0.8	3
223	Global integrated modeling framework of riverine dissolved inorganic nitrogen with seasonal variation. Hydrological Research Letters, 2021, 15, 50-57.	0.3	3
224	Correction to "Agrometeorological conditions of grassland vegetation in central Mongolia and their impact for leaf area growth―by Shin Miyazaki et al Journal of Geophysical Research, 2005, 110, .	3.3	2
225	REPRESENTATION OF SUBGRID SCALE SNOW COVER AND SNOW DEPTH VARIABILITIES IN A GLOBAL LAND MODEL. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2012, 68, I_325-I_330.	0.0	2
226	SIMULATION OF RADIOACTIVE TRACER TRANSPORT USING ISORSM AND UNCERTAINTY ANALYSES. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2013, 69, I_1765-I_1770.	0.0	2
227	Water Resources Management and Adaptation to Climate Change. Water Resources Development and Management, 2016, , 27-40.	0.3	2
228	How Inter-Basin Transfer of Water Alters Basin Water Stress Used for Water Footprint Characterization. Environments - MDPI, 2018, 5, 105.	1.5	2
229	Precipitation Redistribution Method for Regional Simulations of Radioactive Material Transport During the Fukushima Daiichi Nuclear Power Plant Accident. Journal of Geophysical Research D: Atmospheres, 2018, 123, 10,248.	1.2	2
230	Foreword by Prof. Taikan OKI of the United Nations University (UNU) for the Journal of the International Consortium on Landslides. Landslides, 2019, 16, 2299-2300.	2.7	2
231	Reconstructing the pristine flow of highly developed riversâ€â~`â€a case study on the Chao Phraya River. Hydrological Research Letters, 2020, 14, 89-96.	0.3	2
232	BASIN-SCALE EVALUATION OF WATER DEMAND AND SUPPLY CONSIDERING URBAN WATER INTAKE AND DRAINAGE SYSTEM BY USING THE H08 GLOBAL HYDROLOGICAL MODEL. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2021, 77, I_205-I_210.	0.0	2
233	Estimation of Rainfall Distribution. Proceedings of the Japanese Conference on Hydraulics, 1988, 32, 7-12.	0.0	1
234	AN INVESTIGATION OF MONSOON RAINFALL OVER A TROPICAL MOUNTAIN IN SOUTHEAST ASIA USING REGIONAL CLIMATE MODEL. Proceedings of Hydraulic Engineering, 2003, 47, 79-84.	0.0	1

#	Article	IF	CITATIONS
235	DEVELOPMENT OF A GLOBAL INTEGRATED WATER RESOURCES MODEL FOR WATER RESOURCES ASSESSMENTS UNDER CLIMATE CHANGE. Proceedings of Hydraulic Engineering, 2007, 51, 229-234.	0.0	1
236	DETAILED ANALYSIS ON THE VIRTUAL WATER IMPORT TO JAPAN FOCUSING ON THE ORIGIN OF WATER SUPPLY. Proceedings of Hydraulic Engineering, 2008, 52, 367-372.	0.0	1
237	Time for a Change in Japanese Water Resources Policy, Part 3: National and Institutional Directions. International Journal of Water Resources Development, 2009, 25, 571-578.	1.2	1
238	Products and science from GCOM-W1. Proceedings of SPIE, 2012, , .	0.8	1
239	EVALUATION OF INUNDATION RISK IN WHOLE JAPANE BASED ON DAILY PRECIPITATION. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2012, 68, I_1075-I_1080.	0.0	1
240	DEVELOPMENT OF A GLOBAL FLOOD AFFECTED POPULATION REAL-TIME CALCULATION SYSTEM WITH A LAND SURFACE-FLOOD INUNDATION MODEL. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic) Tj ETQq0 0	0 nggBT /0\	ve rl ock 10 Tf
241	CHANGE OF VIRTUAL WATER IMPORT TO JAPAN IN A RECENT DECADE. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2014, 70, I_481-I_486.	0.0	1
242	Water and Energy Cycles. Encyclopedia of Earth Sciences Series, 2014, , 895-903.	0.1	1
243	World Water Resources at Stake. Advances in Geological Science, 2020, , 89-95.	0.0	1
244	Conversion of surface water coverage to water volume using satellite data. Hydrological Research Letters, 2014, 8, 15-19.	0.3	1
245	Characterization Factors for Water Availability Footprint Considering the Difference of Water Sources Based on a Global Water Resource Model. Journal of Life Cycle Assessment Japan, 2014, 10, 327-339.	0.0	1
246	STUDY OF THE ROLE OF INUNDATION ON RIVER WATER TEMPERATURE WITH A NUMERICAL MODEL. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2017, 73, I_1213-I_1218.	0.0	1
247	VALIDATION OF RIVER DISCHARGE FROM A TERRESTRIAL MODEL WITH 1KM RESOLUTION OVER JAPAN. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2017, 73, I_71-I_79.	0.1	1
248	Groundwater Resources in Urban Water Management. Library for Sustainable Urban Regeneration, 2008, , 35-59.	0.0	1
249	Development of an Earth environmental digital library system for soil and land-atmospheric data. , 0, ,		0
250	Surface soil moisture estimation by TRMM/PR and TMI. , O, , .		0
251	AN ASSESSMENT OF THE IMPACT OF RESERVOIR OPERATION ON THE GLOBAL RIVER DISCHARGE. Proceedings of Hydraulic Engineering, 2004, 48, 463-468.	0.0	0
252	Estimation of Agricultural Area in Large Irrigation Districts in Yellow River Basin of China using AVHRR Combined with ETM+. , 2006, , .		0

#	Article	IF	CITATIONS
253	Status of GCOM-W1 development and expected meteorological applications. Proceedings of SPIE, 2010, ,	0.8	0
254	RELATIONS OF HOURLY PRECIPITATION EXTREMES AND TEMPERATURE OVER JAPAN BASED ON GROUND OBSERVATIONAL RECORDS. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2011, 67, I_307-I_312.	0.0	0
255	TOWARD A MAPPING OF GROUNDWATER RECHARGE POTENTIAL:TESTING A DROUGHTY FLOW BASED APPROACH. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2011, 67, I_385-I_390.	0.0	0
256	Relationship between cloud droplet effective radius and cloud top height for deep convective clouds in CloudSat data product. , 2011, , .		0
257	Global Hydrology. , 2011, , 3-25.		0
258	A NEW METHOD FOR ASSESSING THE CAUSES OF EXTREME PRECIPITATION CHANGE UNDER CHANGED CLIMATE CONSIDERING THE ATMOSPHERIC HUMIDITY. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2012, 68, I_421-I_426.	0.0	0
259	The relationship between extreme precipitation and surface air temperature in Bangladesh Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2013, 69, I_127-I_132.	0.0	0
260	Present status of the global change observation mission 1st - water 'SHIZUKU' (GCOM-W1) and the advanced microwave scanning radiometer 2 (AMSR2). , 2014, , .		0
261	How to think water crisis out (Mizu-kiki Hontou no Hanashi). Suimon Mizu Shigen Gakkaishi, 2014, 27, 17-18.	0.1	0
262	IMPACT ASSESSMENT OF HIGH RESOLUTION RIVER INUNDATION PROCESSES IN A CLIMATE MODEL. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2016, 72, I_115-I_120.	0.0	0
263	Global Water Risk Management and the Limits of the Planetary Boundary. Trends in the Sciences, 2018, 23, 3_70-3_73.	0.0	0
264	Water Footprinting for what?. Journal of Life Cycle Assessment Japan, 2010, 6, 187-192.	0.0	0
265	The Current of Research Projects in the World on Hydrology. Trends in the Sciences, 2012, 17, 11_76-11_78.	0.0	0
266	Evaluating the Diurnal Cycle of Precipitation Representation in West African Monsoon Region with Different Convection Schemes. , 2016, , 169-191.		0
267	Catchment-Scale Water Management of Wastewater Treatment in an Urban Sewerage System with CO2 Emission Assessment. Science for Sustainable Societies, 2017, , 151-163.	0.2	0
268	DETERMINANTS OF WATER TEMPERATURE IN THE RIVERS OVER LOW-LATITUDE REGIONS. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2018, 74, I_583-I_588.	0.0	0
269	DEVELOPMENT OF GLOBAL TERRESTRIAL MODEL INCLUDING SUB-GRID HILLSLOPE PROCESSES. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2018, 74, I_991-I_996.	0.0	0
270	DEVELOPMENT OF GLOBAL TERRESTRIAL MODEL CONSIDERING SATURATED LATERAL FLOW. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2019, 75, I_265-I_270.	0.0	0

#	Article	IF	CITATIONS
271	Hydrosphere—The Water Realm Which Supports Human Life. Advances in Geological Science, 2020, , 39-46.	0.0	0
272	TOWARD THE GLOBAL-SCALE ESTIMATION OF WATER RESOURCES WITH A COUPLED MODEL FRAMEWORK OF HYDRO- AND THERMODYNAMICS IN RIVERS AND LAKES. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2021, 77, I_241-I_246.	0.0	0
273	Short History and Future Prospects of Clobal Hydrology. Trends in the Sciences, 2022, 27, 1_12-1_16.	0.0	0
274	Importance of observational reliability for hydrological parameter optimization: a case study of the Upper Chao Phraya River in Thailand. Hydrological Research Letters, 2022, 16, 59-66.	0.3	0