Keun Hyung Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9128387/publications.pdf Version: 2024-02-01

KEUN HYUNG LEE

#	Article	IF	CITATIONS
1	Self-healable, stretchable, and nonvolatile solid polymer electrolytes for sustainable energy storage and sensing applications. Energy Storage Materials, 2022, 45, 323-331.	18.0	24
2	Intrinsically Stretchable and Printable Lithium-Ion Battery for Free-Form Configuration. ACS Nano, 2022, 16, 2271-2281.	14.6	19
3	Facile Achievement of Complementary Resistive Switching in Block Copolymer Micelleâ€Based Resistive Memories. Macromolecular Rapid Communications, 2022, 43, e2100686.	3.9	2
4	Water Washable and Flexible Light-Emitting Fibers Based on Electrochemiluminescent Gels. ACS Applied Materials & Interfaces, 2022, 14, 17709-17718.	8.0	6
5	Amorphous copper iodide: a p-type semiconductor for solution processed p-channel thin-film transistors and inverters. Journal of Materials Chemistry C, 2022, 10, 7815-7821.	5.5	3
6	3D printed solid-state composite electrodes and electrolytes for high-energy-density flexible microsupercapacitors. Journal of Energy Storage, 2022, 53, 105206.	8.1	3
7	Electrochemiluminescent Transistors: A New Strategy toward Lightâ€Emitting Switching Devices. Advanced Materials, 2021, 33, e2005456.	21.0	17
8	Ultraâ€5ensitive and Stretchable Ionic Skins for Highâ€Precision Motion Monitoring. Advanced Functional Materials, 2021, 31, 2010199.	14.9	60
9	Electrochemiluminescent Materials: Electrochemiluminescent Transistors: A New Strategy toward Lightâ€Emitting Switching Devices (Adv. Mater. 5/2021). Advanced Materials, 2021, 33, 2170037.	21.0	0
10	Block Copolymerâ€Based Supramolecular Ionogels for Accurate Onâ€Skin Motion Monitoring. Advanced Functional Materials, 2021, 31, 2102386.	14.9	60
11	Optimizing Electrochemically Active Surfaces of Carbonaceous Electrodes for Ionogel Based Supercapacitors. Advanced Functional Materials, 2020, 30, 2002053.	14.9	35
12	High-Mobility Low-Hysteresis Electrolyte-Gated Transistors with a DPP-Benzotriazole Copolymer Semiconductor. Macromolecular Research, 2020, 28, 683-687.	2.4	9
13	Vacancy engineering of a solution processed Cul semiconductor: tuning the electrical properties of inorganic P-channel thin-film transistors. Journal of Materials Chemistry C, 2020, 8, 9608-9614.	5.5	29
14	Thermostable Ion Gels for High-Temperature Operation of Electrolyte-Gated Transistors. ACS Applied Materials & Interfaces, 2020, 12, 15464-15471.	8.0	13
15	Solution processed vertical p-channel thin film transistors using copper(i) thiocyanate. Journal of Materials Chemistry C, 2020, 8, 5587-5593.	5.5	12
16	Tough and ionically conductive polymer electrolyte composites based on random copolymers with crystallizable side chain architecture. Organic Electronics, 2020, 84, 105788.	2.6	5
17	Lightâ€Emitting Devices Based on Electrochemiluminescence Gels. Advanced Functional Materials, 2020, 30, 1907936.	14.9	62
18	Meyer-Rod Coated 2D Single-Crystalline Copper Nanoplate Film with Intensive Pulsed Light for Flexible Electrode. Coatings, 2020, 10, 88.	2.6	3

Keun Hyung Lee

#	Article	IF	CITATIONS
19	Printable carbon nanotube-based elastic conductors for fully-printed sub-1 V stretchable electrolyte-gated transistors and inverters. Journal of Materials Chemistry C, 2020, 8, 3639-3645.	5.5	17
20	Highâ€Performance Pâ€Type Copper(I) Thiocyanate Thin Film Transistors Processed from Solution at Low Temperature. Advanced Materials Interfaces, 2019, 6, 1900883.	3.7	16
21	Ultrahigh-Mobility and Solution-Processed Inorganic P-Channel Thin-Film Transistors Based on a Transition-Metal Halide Semiconductor. ACS Applied Materials & Interfaces, 2019, 11, 40243-40251.	8.0	34
22	Low voltage, high gain electrolyte-gated complementary inverters based on transfer-printed block copolymer ion gels. Organic Electronics, 2019, 71, 266-271.	2.6	18
23	High-conductivity electrolyte gate dielectrics based on poly(styrene- <i>co</i> -methyl) Tj ETQq1 1 0.784314 rgBT	/Qverlock	10 Tf 50 58
24	Highly conductive and mechanically robust nanocomposite polymer electrolytes for solid-state electrochemical thin-film devices. Organic Electronics, 2019, 65, 426-433.	2.6	19
25	Light emitting fabrics based on luminophore dye-doped ion gel electrolyte microfibers. Dyes and Pigments, 2018, 154, 188-193.	3.7	9
26	Nonvolatile Electric Double-Layer Transistor Memory Devices Embedded with Au Nanoparticles. ACS Applied Materials & Interfaces, 2018, 10, 9563-9570.	8.0	22
27	Solution-Processed Perovskite Gate Insulator for Sub-2 V Electrolyte-Gated Transistors. Journal of Physical Chemistry C, 2018, 122, 10552-10558.	3.1	5
28	Sub-2 V, Transfer-Stamped Organic/Inorganic Complementary Inverters Based on Electrolyte-Gated Transistors. ACS Applied Materials & Interfaces, 2018, 10, 40672-40680.	8.0	39
29	Highly conductive, binary ionic liquid–solvent mixture ion gels for effective switching of electrolyte-gated transistors. Journal of Materials Chemistry C, 2018, 6, 10987-10993.	5.5	26
30	Electrospun polymer electrolyte nanocomposites for solid-state energy storage. Composites Part B: Engineering, 2018, 152, 275-281.	12.0	16
31	Physically Cross-Linked Homopolymer Ion Gels for High Performance Electrolyte-Gated Transistors. ACS Applied Materials & Interfaces, 2017, 9, 8813-8818.	8.0	66
32	Area-Controllable Stamping of Semicrystalline Copolymer Ionogels for Solid-State Electrolyte-Gated Transistors and Light-Emitting Devices. ACS Applied Materials & Interfaces, 2017, 9, 42978-42985.	8.0	15
33	Self-Supporting Ion Gels for Electrochemiluminescent Sticker-Type Optoelectronic Devices. Scientific Reports, 2016, 6, 29805.	3.3	49
34	Improved Hierarchical Ordering in Supramolecules via Symmetrically Bifunctionalized Organic Semiconductor. Macromolecules, 2016, 49, 2639-2645.	4.8	12
35	Supercapacitors: Solid tate Dual Function Electrochemical Devices: Energy Storage and Lightâ€Emitting Applications (Adv. Energy Mater. 19/2016). Advanced Energy Materials, 2016, 6, .	19.5	1
36	Solidâ€State Dual Function Electrochemical Devices: Energy Storage and Lightâ€Emitting Applications. Advanced Energy Materials, 2016, 6, 1600651.	19.5	27

Keun Hyung Lee

#	ARTICLE	IF	CITATIONS
37	Photo-Patternable ZnO Thin Films Based on Cross-Linked Zinc Acrylate for Organic/Inorganic Hybrid Complementary Inverters. ACS Applied Materials & Interfaces, 2016, 8, 5499-5508.	8.0	45
38	Optimization of nanocomposite gate insulators for organic thin film transistors. Organic Electronics, 2015, 17, 144-150.	2.6	13
39	Dielectric properties of barium titanate supramolecular nanocomposites. Nanoscale, 2014, 6, 3526.	5.6	23
40	Transfer Printing of Thermoreversible Ion Gels for Flexible Electronics. ACS Applied Materials & Interfaces, 2013, 5, 9522-9527.	8.0	56
41	Electrolyteâ€Gated Transistors for Organic and Printed Electronics. Advanced Materials, 2013, 25, 1822-1846.	21.0	797
42	High Toughness, High Conductivity Ion Gels by Sequential Triblock Copolymer Self-Assembly and Chemical Cross-Linking. Journal of the American Chemical Society, 2013, 135, 9652-9655.	13.7	177
43	Performance and Stability of Aerosol-Jet-Printed Electrolyte-Gated Transistors Based on Poly(3-hexylthiophene). ACS Applied Materials & Interfaces, 2013, 5, 6580-6585.	8.0	116
44	Printed, subâ€2V ZnO Electrolyte Gated Transistors and Inverters on Plastic. Advanced Materials, 2013, 25, 3413-3418.	21.0	140
45	"Cut and Stick―Rubbery Ion Gels as High Capacitance Gate Dielectrics. Advanced Materials, 2012, 24, 4457-4462.	21.0	383
46	Viscoelastic Properties, Ionic Conductivity, and Materials Design Considerations for Poly(styrene- <i>b</i> -ethylene oxide- <i>b</i> -styrene)-Based Ion Gel Electrolytes. Macromolecules, 2011, 44, 8981-8989.	4.8	97
47	Ionic Conductivity, Capacitance, and Viscoelastic Properties of Block Copolymer-Based Ion Gels. Macromolecules, 2011, 44, 940-949.	4.8	183
48	Electrical Impedance of Spin-Coatable Ion Gel Films. Journal of Physical Chemistry B, 2011, 115, 3315-3321.	2.6	166