Matthias Kretzler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9126965/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Systems biology in diagnosis and treatment of kidney disease. , 2022, , 465-479.		0
2	Multiplexed droplet single-cell sequencing (Mux-Seq) of normal and transplant kidney. American Journal of Transplantation, 2022, 22, 876-885.	4.7	7
3	Urine Single-Cell RNA Sequencing in Focal Segmental Glomerulosclerosis Reveals Inflammatory Signatures. Kidney International Reports, 2022, 7, 289-304.	0.8	21
4	Digital health and artificial intelligence in kidney research: a report from the 2020 Kidney Disease Clinical Trialists (KDCT) meeting. Nephrology Dialysis Transplantation, 2022, 37, 620-627.	0.7	4
5	Quantification of Glomerular Structural Lesions: Associations With Clinical Outcomes and Transcriptomic Profiles in Nephrotic Syndrome. American Journal of Kidney Diseases, 2022, 79, 807-819.e1.	1.9	13
6	Inflammation, Hyperglycemia, and Adverse Outcomes in Individuals With Diabetes Mellitus Hospitalized for COVID-19. Diabetes Care, 2022, 45, 692-700.	8.6	40
7	Urine Proteomics and Renal <scp>Singleâ€Cell</scp> Transcriptomics Implicate Interleukinâ€16 in Lupus Nephritis. Arthritis and Rheumatology, 2022, 74, 829-839.	5.6	38
8	Unsupervised machine learning for identifying important visual features through bag-of-words using histopathology data from chronic kidney disease. Scientific Reports, 2022, 12, 4832.	3.3	14
9	Glomerular endothelial cell-podocyte stresses and crosstalk in structurally normal kidney transplants. Kidney International, 2022, 101, 779-792.	5.2	11
10	Urinary Proteomics Identifies Cathepsin D as a Biomarker of Rapid eGFR Decline in Type 1 Diabetes. Diabetes Care, 2022, 45, 1416-1427.	8.6	14
11	Genetics in chronic kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney International, 2022, 101, 1126-1141.	5.2	46
12	Micro-dissection and integration of long and short reads to create a robust catalog of kidney compartment-specific isoforms. PLoS Computational Biology, 2022, 18, e1010040.	3.2	0
13	Molecular Characterization of Membranous Nephropathy. Journal of the American Society of Nephrology: JASN, 2022, 33, 1208-1221.	6.1	12
14	MO059: Trajectory Analysis of the Kidney Organoid Proteome Extends its Modelling Potential of Disease. Nephrology Dialysis Transplantation, 2022, 37, .	0.7	0
15	Genome-wide meta-analysis and omics integration identifies novel genes associated with diabetic kidney disease. Diabetologia, 2022, 65, 1495-1509.	6.3	16
16	A reference tissue atlas for the human kidney. Science Advances, 2022, 8, .	10.3	67
17	Urinary excretion of epidermal growth factor and rapid loss of kidney function. Nephrology Dialysis Transplantation, 2021, 36, 1882-1892.	0.7	23
18	A multimodal and integrated approach to interrogate human kidney biopsies with rigor and reproducibility: guidelines from the Kidney Precision Medicine Project. Physiological Genomics, 2021, 53, 1-11.	2.3	59

55,1

#	Article	IF	CITATIONS
19	Patient perspectives and involvement in precision medicine research. Kidney International, 2021, 99, 511-514.	5.2	5
20	Rationale and design of the Kidney Precision Medicine Project. Kidney International, 2021, 99, 498-510.	5.2	94
21	Innovating and invigorating the clinical trial infrastructure for glomerular diseases. Kidney International, 2021, 99, 519-523.	5.2	4
22	Gene expression profiles of diabetic kidney disease and neuropathy in <i>eNOS</i> knockout mice: Predictors of pathology and RAS blockade effects. FASEB Journal, 2021, 35, e21467.	0.5	10
23	Kidney Injury Molecule-1 and Periostin Urinary Excretion and Tissue Expression Levels and Association with Glomerular Disease Outcomes. Complex Psychiatry, 2021, 1, 45-59.	0.9	4
24	IGFBP-1 expression is reduced in human type 2 diabetic glomeruli and modulates β1-integrin/FAK signalling in human podocytes. Diabetologia, 2021, 64, 1690-1702.	6.3	16
25	APOL1 genotype-associated morphologic changes among patients with focal segmental glomerulosclerosis. Pediatric Nephrology, 2021, 36, 2747-2757.	1.7	3
26	Angiotensin II up-regulates sodium-glucose co-transporter 2 expression and SGLT2 inhibitor attenuates Ang II-induced hypertensive renal injury in mice. Clinical Science, 2021, 135, 943-961.	4.3	37
27	Uncovering genetic mechanisms of hypertension through multi-omic analysis of the kidney. Nature Genetics, 2021, 53, 630-637.	21.4	37
28	Nephrotic syndrome disease activity is proportional to its associated hypercoagulopathy. Thrombosis Research, 2021, 201, 50-59.	1.7	13
29	Perspectives on a Way Forward to Implementation of Precision Medicine in Patients With Diabetic Kidney Disease; Results of a Stakeholder Consensus-Building Meeting. Frontiers in Pharmacology, 2021, 12, 662642.	3.5	1
30	Urinary EGF and MCP-1 and risk of CKD after cardiac surgery. JCl Insight, 2021, 6, .	5.0	16
31	Perspectives in systems nephrology. Cell and Tissue Research, 2021, 385, 475-488.	2.9	7
32	Pro-cachectic factors link experimental and human chronic kidney disease to skeletal muscle wasting programs. Journal of Clinical Investigation, 2021, 131, .	8.2	34
33	Comprehensive Search for Novel Circulating miRNAs and Axon Guidance Pathway Proteins Associated with Risk of ESKD in Diabetes. Journal of the American Society of Nephrology: JASN, 2021, 32, 2331-2351.	6.1	20
34	Pima Indian Contributions to Our Understanding of Diabetic Kidney Disease. Diabetes, 2021, 70, 1603-1616.	0.6	15
35	Renin-angiotensin system inhibition reverses the altered triacylglycerol metabolic network in diabetic kidney disease. Metabolomics, 2021, 17, 65.	3.0	10
36	Annexin A1 alleviates kidney injury by promoting the resolution of inflammation in diabetic nephropathy. Kidney International, 2021, 100, 107-121.	5.2	44

#	Article	IF	CITATIONS
37	Diminished retinal complex lipid synthesis and impaired fatty acid β-oxidation associated with human diabetic retinopathy. JCI Insight, 2021, 6, .	5.0	20
38	The Clinical Application of Urine Soluble CD163 in ANCA-Associated Vasculitis. Journal of the American Society of Nephrology: JASN, 2021, 32, 2920-2932.	6.1	12
39	Cadherin-11, Sparc-related modular calcium binding protein-2, and Pigment epithelium-derived factor are promising non-invasive biomarkers of kidney fibrosis. Kidney International, 2021, 100, 672-683.	5.2	21
40	Serum Level of Polyubiquitinated PTEN and Loss of Kidney Function in American Indians With Type 2 Diabetes. American Journal of Kidney Diseases, 2021, , .	1.9	4
41	Cross-validation of SARS-CoV-2 responses in kidney organoids and clinical populations. JCI Insight, 2021, 6, .	5.0	21
42	A glomerular transcriptomic landscape of apolipoprotein L1 in Black patients with focal segmental glomerulosclerosis. Kidney International, 2021, , .	5.2	8
43	Rationale and design of the Transformative Research in Diabetic NephropathyÂ(TRIDENT) Study. Kidney International, 2020, 97, 10-13.	5.2	23
44	Urinary Epidermal Growth Factor as a Marker of Disease Progression in Children With Nephrotic Syndrome. Kidney International Reports, 2020, 5, 414-425.	0.8	10
45	Longitudinal Changes in Health-Related Quality of Life in Primary Glomerular Disease: Results From the CureGN Study. Kidney International Reports, 2020, 5, 1679-1689.	0.8	17
46	SARS-CoV-2 receptor networks in diabetic and COVID-19–associated kidney disease. Kidney International, 2020, 98, 1502-1518.	5.2	64
47	International consensus definitions of clinical trial outcomes for kidney failure: 2020. Kidney International, 2020, 98, 849-859.	5.2	65
48	Estimated GFR Trajectories in Pediatric and Adult Nephrotic Syndrome: Results From the Nephrotic Syndrome Study Network (NEPTUNE). Kidney Medicine, 2020, 2, 407-417.	2.0	1
49	Modelling kidney disease using ontology: insights from the Kidney Precision Medicine Project. Nature Reviews Nephrology, 2020, 16, 686-696.	9.6	45
50	Transcriptome analysis of primary podocytes reveals novel calcium regulated regulatory networks. FASEB Journal, 2020, 34, 14490-14506.	0.5	1
51	COVID-19 and Diabetes: A Collision and Collusion of Two Diseases. Diabetes, 2020, 69, 2549-2565.	0.6	91
52	The longitudinal relationship between patient-reported outcomes and clinical characteristics among patients with focal segmental glomerulosclerosis in the Nephrotic Syndrome Study Network. CKJ: Clinical Kidney Journal, 2020, 13, 597-606.	2.9	14
53	JAK-STAT Activity in Peripheral Blood Cells and Kidney Tissue in IgA Nephropathy. Clinical Journal of the American Society of Nephrology: CJASN, 2020, 15, 973-982.	4.5	25
54	Integrated multi-omics approaches to improve classification of chronic kidney disease. Nature Reviews Nephrology, 2020, 16, 657-668.	9.6	99

#	Article	IF	CITATIONS
55	Proteomic Analysis Identifies Distinct Glomerular Extracellular Matrix in Collapsing Focal Segmental Glomerulosclerosis. Journal of the American Society of Nephrology: JASN, 2020, 31, 1883-1904.	6.1	37
56	A role for NPY-NPY2R signaling in albuminuric kidney disease. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15862-15873.	7.1	12
57	Nomenclature for kidney function and disease: report of a Kidney Disease: Improving Global Outcomes (KDIGO) Consensus Conference. Kidney International, 2020, 97, 1117-1129.	5.2	407
58	The genetic architecture of membranous nephropathy and its potential to improve non-invasive diagnosis. Nature Communications, 2020, 11, 1600.	12.8	120
59	Prognostic imaging biomarkers for diabetic kidney disease (iBEAt): study protocol. BMC Nephrology, 2020, 21, 242.	1.8	22
60	Persistent Disease Activity in Patients With Long-Standing Glomerular Disease. Kidney International Reports, 2020, 5, 860-871.	0.8	2
61	Machine learning, the kidney, and genotype–phenotype analysis. Kidney International, 2020, 97, 1141-1149.	5.2	23
62	Proteome Analysis of Isolated Podocytes Reveals Stress Responses in Glomerular Sclerosis. Journal of the American Society of Nephrology: JASN, 2020, 31, 544-559.	6.1	23
63	Systems Biology and Kidney Disease. Clinical Journal of the American Society of Nephrology: CJASN, 2020, 15, 695-703.	4.5	15
64	Single cell transcriptomics identifies focal segmental glomerulosclerosis remission endothelial biomarker. JCI Insight, 2020, 5, .	5.0	108
65	Soluble RARRES1 induces podocyte apoptosis to promote glomerular disease progression. Journal of Clinical Investigation, 2020, 130, 5523-5535.	8.2	37
66	Molecular Profiling of Cutaneous Lupus Lesions Identifies Subgroups Distinct from Clinical Phenotypes. Journal of Clinical Medicine, 2019, 8, 1244.	2.4	45
67	Genome-Wide Association Study of Diabetic Kidney Disease Highlights Biology Involved in Glomerular Basement Membrane Collagen. Journal of the American Society of Nephrology: JASN, 2019, 30, 2000-2016.	6.1	135
68	Urinary Epidermal Growth Factor/Creatinine Ratio and Graft Failure in Renal Transplant Recipients: A Prospective Cohort Study. Journal of Clinical Medicine, 2019, 8, 1673.	2.4	9
69	Integrative analysis of prognostic biomarkers derived from multiomics panels helps discrimination of chronic kidney disease trajectories in people with type 2 diabetes. Kidney International, 2019, 96, 1381-1388.	5.2	29
70	Identification of glomerular and podocyte-specific genes and pathways activated by sera of patients with focal segmental glomerulosclerosis. PLoS ONE, 2019, 14, e0222948.	2.5	18
71	Renal SGLT mRNA expression in human health and disease: a study in two cohorts. American Journal of Physiology - Renal Physiology, 2019, 317, F1224-F1230.	2.7	18
72	Soluble ST2 and Galectin-3 and Progression of CKD. Kidney International Reports, 2019, 4, 103-111.	0.8	41

#	Article	IF	CITATIONS
73	Correlation Between Baseline GFR and Subsequent Change in GFR in Norwegian Adults Without Diabetes and in Pima Indians. American Journal of Kidney Diseases, 2019, 73, 777-785.	1.9	34
74	MultiPLIER: A Transfer Learning Framework for Transcriptomics Reveals Systemic Features of Rare Disease. Cell Systems, 2019, 8, 380-394.e4.	6.2	92
75	The immune cell landscape in kidneys of patients with lupus nephritis. Nature Immunology, 2019, 20, 902-914.	14.5	501
76	Changes in Albuminuria But Not GFR are Associated with Early Changes in Kidney Structure in Type 2 Diabetes. Journal of the American Society of Nephrology: JASN, 2019, 30, 1049-1059.	6.1	45
77	A signature of circulating inflammatory proteins and development of end-stage renal disease in diabetes. Nature Medicine, 2019, 25, 805-813.	30.7	260
78	Health-related quality of life in glomerular disease. Kidney International, 2019, 95, 1209-1224.	5.2	38
79	LRG1 Promotes Diabetic Kidney Disease Progression by Enhancing TGF-β–Induced Angiogenesis. Journal of the American Society of Nephrology: JASN, 2019, 30, 546-562.	6.1	82
80	Low levels of urinary epidermal growth factorÂpredict chronic kidney disease progressionÂin children. Kidney International, 2019, 96, 214-221.	5.2	43
81	Serum amyloid A and Janus kinase 2 in a mouse model of diabetic kidney disease. PLoS ONE, 2019, 14, e0211555.	2.5	14
82	Glomerular podocytes in kidney health and disease. Lancet, The, 2019, 393, 856-858.	13.7	20
83	205â€Single cell RNA expression in lupus nephritis comparing african-american and caucasian patients identifies differential expression of type I interferon pathway. , 2019, , .		0
84	Histologic and Molecular Correlates in Patients with AL Amyloidosis in Remission But With Persistent Renal Disease. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e335-e336.	0.4	0
85	Decoding the genetic determinants of gene regulation in the kidney. Kidney International, 2019, 95, 16-18.	5.2	3
86	CureGN Study Rationale, Design, and Methods: Establishing a Large Prospective Observational Study of Glomerular Disease. American Journal of Kidney Diseases, 2019, 73, 218-229.	1.9	68
87	Organoid single cell profiling identifies a transcriptional signature of glomerular disease. JCI Insight, 2019, 4, .	5.0	73
88	Identification of dicarbonyl and L-xylulose reductase as a therapeutic target in human chronic kidney disease. JCI Insight, 2019, 4, .	5.0	5
89	Increased lipogenesis and impaired β-oxidation predict type 2 diabetic kidney disease progression in American Indians. JCI Insight, 2019, 4, .	5.0	74
90	ATP-binding cassette A1 deficiency causes cardiolipin-driven mitochondrial dysfunction in podocytes. Journal of Clinical Investigation, 2019, 129, 3387-3400.	8.2	103

#	Article	IF	CITATIONS
91	Thrombin Generation in Nephrotic Syndrome Is Dependent on Remission Status and Hypercholestrolemia. Blood, 2019, 134, 2422-2422.	1.4	Ο
92	Upregulation of Tumor Susceptibility Gene 101 (TSG101) by mechanical stress in podocytes. Cellular and Molecular Biology, 2019, 65, 84-88.	0.9	0
93	An Outcomes-Based Definition of Proteinuria Remission in Focal Segmental Glomerulosclerosis. Clinical Journal of the American Society of Nephrology: CJASN, 2018, 13, 414-421.	4.5	57
94	Interstitial fibrosis scored on whole-slide digital imaging of kidney biopsies is a predictor of outcome in proteinuric glomerulopathies. Nephrology Dialysis Transplantation, 2018, 33, 310-318.	0.7	85
95	JAK1/JAK2 inhibition by baricitinib in diabetic kidney disease: results from a Phase 2 randomized controlled clinical trial. Nephrology Dialysis Transplantation, 2018, 33, 1950-1959.	0.7	183
96	A null variant in the apolipoprotein L3 gene is associated with non-diabetic nephropathy. Nephrology Dialysis Transplantation, 2018, 33, 323-330.	0.7	25
97	A molecular morphometric approach to diabeticÂkidney disease can link structure toÂfunction and outcome. Kidney International, 2018, 93, 439-449.	5.2	54
98	Shared and distinct lipid-lipid interactions in plasma and affected tissues in a diabetic mouse model. Journal of Lipid Research, 2018, 59, 173-183.	4.2	38
99	Novel avenues for drug discovery in diabetic kidney disease. Expert Opinion on Drug Discovery, 2018, 13, 65-74.	5.0	15
100	Systems biology approaches to identify disease mechanisms and facilitate targeted therapy in the management of glomerular disease. Current Opinion in Nephrology and Hypertension, 2018, 27, 433-439.	2.0	6
101	An integrative systems biology approach for precision medicine in diabetic kidney disease. Diabetes, Obesity and Metabolism, 2018, 20, 6-13.	4.4	26
102	Hydroxypropyl-β-cyclodextrin protects from kidney disease in experimental Alport syndrome and focal segmental glomerulosclerosis. Kidney International, 2018, 94, 1151-1159.	5.2	56
103	Single-cell analysis of progenitor cell dynamics and lineage specification in the human fetal kidney. Development (Cambridge), 2018, 145, .	2.5	130
104	Clinical Characteristics and Treatment Patterns of Children and Adults With IgA Nephropathy or IgA Vasculitis: Findings From the CureGN Study. Kidney International Reports, 2018, 3, 1373-1384.	0.8	39
105	High-Throughput Screening Enhances Kidney Organoid Differentiation from Human Pluripotent Stem Cells and Enables Automated Multidimensional Phenotyping. Cell Stem Cell, 2018, 22, 929-940.e4.	11.1	328
106	Renal Pre-Competitive Consortium (RPC2): discovering therapeutic targets together. Drug Discovery Today, 2018, 23, 1695-1699.	6.4	8
107	Urinary epidermal growth factor as a prognostic marker for the progression of Alport syndrome in children. Pediatric Nephrology, 2018, 33, 1731-1739.	1.7	27
108	An eQTL Landscape of Kidney Tissue in Human Nephrotic Syndrome. American Journal of Human Genetics, 2018, 103, 232-244.	6.2	147

#	Article	IF	CITATIONS
109	Single-Cell Sequencing the Glomerulus, Unraveling the Molecular Programs of Glomerular Filtration, One Cell at a Time. Journal of the American Society of Nephrology: JASN, 2018, 29, 2036-2038.	6.1	4
110	Validation of Plasma Biomarker Candidates for the Prediction of eGFR Decline in Patients With Type 2 Diabetes. Diabetes Care, 2018, 41, 1947-1954.	8.6	36
111	Renal matrix Gla protein expression increases progressively with CKD and predicts renal outcome. Experimental and Molecular Pathology, 2018, 105, 120-129.	2.1	19
112	Metabolic pathways and immunometabolism in rare kidney diseases. Annals of the Rheumatic Diseases, 2018, 77, annrheumdis-2017-212935.	0.9	101
113	Urinary epidermal growth factor predicts renal prognosis in antineutrophil cytoplasmic antibody-associated vasculitis. Annals of the Rheumatic Diseases, 2018, 77, 1339-1344.	0.9	21
114	<i>FAR2</i> is associated with kidney disease in mice and humans. Physiological Genomics, 2018, 50, 543-552.	2.3	9
115	JAK-STAT signaling is activated in the kidney and peripheral blood cells of patients with focal segmental glomerulosclerosis. Kidney International, 2018, 94, 795-808.	5.2	62
116	GDF-15, Galectin 3, Soluble ST2, and Risk of Mortality and Cardiovascular Events in CKD. American Journal of Kidney Diseases, 2018, 72, 519-528.	1.9	82
117	Consent for Genetic Biobanking in a Diverse Multisite CKD Cohort. Kidney International Reports, 2018, 3, 1267-1275.	0.8	9
118	Transethnic, Genome-Wide Analysis Reveals Immune-Related Risk Alleles and Phenotypic Correlates in Pediatric Steroid-Sensitive Nephrotic Syndrome. Journal of the American Society of Nephrology: JASN, 2018, 29, 2000-2013.	6.1	72
119	Tyro3 is a podocyte protective factor in glomerular disease. JCI Insight, 2018, 3, .	5.0	14
120	<i>APOL1</i> -associated glomerular disease among African-American children: a collaboration of the Chronic Kidney Disease in Children (CKiD) and Nephrotic Syndrome Study Network (NEPTUNE) cohorts. Nephrology Dialysis Transplantation, 2017, 32, gfw061.	0.7	60
121	Comparative RNAâ€Seq transcriptome analyses reveal distinct metabolic pathways in diabetic nerve and kidney disease. Journal of Cellular and Molecular Medicine, 2017, 21, 2140-2152.	3.6	45
122	Growth Differentiation Factor–15 and Risk of CKD Progression. Journal of the American Society of Nephrology: JASN, 2017, 28, 2233-2240.	6.1	127
123	Global kidney health 2017 and beyond: a roadmap for closing gaps in care, research, and policy. Lancet, The, 2017, 390, 1888-1917.	13.7	662
124	Digital pathology imaging as a novel platform for standardization and globalization of quantitative nephropathology. CKJ: Clinical Kidney Journal, 2017, 10, 176-187.	2.9	45
125	Podocyte-specific JAK2 overexpression worsens diabetic kidney disease in mice. Kidney International, 2017, 92, 909-921.	5.2	67
126	Inflammation and elevated levels of fibroblast growth factor 23 are independent risk factors forÂdeath in chronic kidney disease. Kidney International, 2017, 91, 711-719.	5.2	91

#	Article	IF	CITATIONS
127	Absence of miR-146a in Podocytes Increases Risk of Diabetic Glomerulopathy via Up-regulation of ErbB4 and Notch-1. Journal of Biological Chemistry, 2017, 292, 732-747.	3.4	74
128	Genetic and environmental risk factors for chronic kidney disease. Kidney International Supplements, 2017, 7, 88-106.	14.2	57
129	Strategies to improve monitoring disease progression, assessing cardiovascular risk, and defining prognostic biomarkers in chronic kidney disease. Kidney International Supplements, 2017, 7, 107-113.	14.2	19
130	Defining Renal Neoplastic Disease, One Cell at a Time: Mass Cytometry, a New Tool for the Study of Kidney BiologyÂandÂDisease. American Journal of Kidney Diseases, 2017, 70, 758-761.	1.9	0
131	Transcriptome-based network analysis reveals renal cell type-specific dysregulation of hypoxia-associated transcripts. Scientific Reports, 2017, 7, 8576.	3.3	62
132	Myeloperoxidase Levels and Its Product 3-Chlorotyrosine Predict Chronic Kidney Disease Severity and Associated Coronary Artery Disease. American Journal of Nephrology, 2017, 46, 73-81.	3.1	32
133	FSGS as an Adaptive Response to Growth-Induced Podocyte Stress. Journal of the American Society of Nephrology: JASN, 2017, 28, 2931-2945.	6.1	62
134	ORAI channels are critical for receptor-mediated endocytosis of albumin. Nature Communications, 2017, 8, 1920.	12.8	39
135	Metabolomics and Gene Expression Analysis Reveal Down-regulation of the Citric Acid (TCA) Cycle in Non-diabetic CKD Patients. EBioMedicine, 2017, 26, 68-77.	6.1	103
136	Transcriptomic and Proteomic Profiling Provides Insight into Mesangial Cell Function in IgA Nephropathy. Journal of the American Society of Nephrology: JASN, 2017, 28, 2961-2972.	6.1	65
137	Blood Pressure and Visit-to-Visit Blood Pressure Variability Among Individuals With Primary Proteinuric Glomerulopathies. Hypertension, 2017, 70, 315-323.	2.7	23
138	Renal biopsy-driven molecular target identification in glomerular disease. Pflugers Archiv European Journal of Physiology, 2017, 469, 1021-1028.	2.8	9
139	Evaluating Mendelian nephrotic syndrome genes for evidence for risk alleles or oligogenicity that explain heritability. Pediatric Nephrology, 2017, 32, 467-476.	1.7	9
140	A systems approach to renal inflammation in SLE. Clinical Immunology, 2017, 185, 109-118.	3.2	13
141	Systems biology analysis reveals role of MDM2 in diabetic nephropathy. JCI Insight, 2016, 1, e87877.	5.0	34
142	Reproducibility of the NEPTUNE descriptor-based scoring system on whole-slide images and histologic and ultrastructural digital images. Modern Pathology, 2016, 29, 671-684.	5.5	56
143	Personalized immunomonitoring in lupus and lupus nephritis. Nature Reviews Nephrology, 2016, 12, 320-321.	9.6	4
144	A reference panel of 64,976 haplotypes for genotype imputation. Nature Genetics, 2016, 48, 1279-1283.	21.4	2,421

#	Article	IF	CITATIONS
145	The relatively poor correlation between random andÂ24-hour urine protein excretion in patients withÂbiopsy-proven glomerular diseases. Kidney International, 2016, 90, 1080-1089.	5.2	51
146	Defining Glomerular Disease in Mechanistic Terms: Implementing an Integrative Biology Approach in Nephrology. Clinical Journal of the American Society of Nephrology: CJASN, 2016, 11, 2054-2060.	4.5	37
147	JAK inhibition in the treatment of diabetic kidney disease. Diabetologia, 2016, 59, 1624-1627.	6.3	107
148	Using Population Genetics to Interrogate the Monogenic Nephrotic Syndrome Diagnosis in a Case Cohort. Journal of the American Society of Nephrology: JASN, 2016, 27, 1970-1983.	6.1	41
149	Complete Remission in the Nephrotic Syndrome Study Network. Clinical Journal of the American Society of Nephrology: CJASN, 2016, 11, 81-89.	4.5	53
150	Transcriptional networks of murine diabetic peripheral neuropathy and nephropathy: common and distinct gene expression patterns. Diabetologia, 2016, 59, 1297-1306.	6.3	34
151	Integrative Genomics Identifies Novel Associations with APOL1 Risk Genotypes in Black NEPTUNE Subjects. Journal of the American Society of Nephrology: JASN, 2016, 27, 814-823.	6.1	110
152	Tissue-specific metabolic reprogramming drives nutrient flux in diabetic complications. JCI Insight, 2016, 1, e86976.	5.0	188
153	A role for genetic susceptibility in sporadic focal segmental glomerulosclerosis. Journal of Clinical Investigation, 2016, 126, 1067-1078.	8.2	41
154	Local TNF causes NFATc1-dependent cholesterol-mediated podocyte injury. Journal of Clinical Investigation, 2016, 126, 3336-3350.	8.2	123
155	Strategy and rationale for urine collection protocols employed in the NEPTUNE study. BMC Nephrology, 2015, 16, 190.	1.8	14
156	Targeted Lipidomic and Transcriptomic Analysis Identifies Dysregulated Renal Ceramide Metabolism in a Mouse Model of Diabetic Kidney Disease. Journal of Proteomics and Bioinformatics, 2015, s14, .	0.4	30
157	Genome-Wide Association and Trans-ethnic Meta-Analysis for Advanced Diabetic Kidney Disease: Family Investigation of Nephropathy and Diabetes (FIND). PLoS Genetics, 2015, 11, e1005352.	3.5	118
158	Sphingomyelinase-Like Phosphodiesterase 3b Expression Levels Determine Podocyte Injury Phenotypes in Glomerular Disease. Journal of the American Society of Nephrology: JASN, 2015, 26, 133-147.	6.1	119
159	The Metabolic Syndrome and Microvascular Complications in a Murine Model of Type 2 Diabetes. Diabetes, 2015, 64, 3294-3304.	0.6	49
160	Pro: 'The usefulness of biomarkers in glomerular diseases'. The problem: moving from syndrome to mechanismindividual patient variability in disease presentation, course and response to therapy. Nephrology Dialysis Transplantation, 2015, 30, 892-898.	0.7	15
161	Integrative Biology of Diabetic Kidney Disease. Kidney Diseases (Basel, Switzerland), 2015, 1, 194-203.	2.5	8
162	Localization of APOL1 Protein and mRNA in the Human Kidney. Journal of the American Society of Nephrology: JASN, 2015, 26, 339-348.	6.1	113

#	Article	IF	CITATIONS
163	Introduction: Precision Medicine for Glomerular Disease: The Road Forward. Seminars in Nephrology, 2015, 35, 209-211.	1.6	13
164	The role of renin–angiotensin–aldosterone system genes in the progression of chronic kidney disease: findings from the Chronic Renal Insufficiency Cohort (CRIC) study. Nephrology Dialysis Transplantation, 2015, 30, 1711-1718.	0.7	22
165	A cis-eQTL in PFKFB2 is associated with diabetic nephropathy, adiposity and insulin secretion in American Indians. Human Molecular Genetics, 2015, 24, 2985-2996.	2.9	13
166	Opponent's comments. Nephrology Dialysis Transplantation, 2015, 30, 891-891.	0.7	0
167	Molecular studies of lupus nephritis kidneys. Immunologic Research, 2015, 63, 187-196.	2.9	15
168	A Transcriptional Map of the Renal Tubule: Linking Structure to Function. Journal of the American Society of Nephrology: JASN, 2015, 26, 2603-2605.	6.1	4
169	Tissue transcriptome-driven identification of epidermal growth factor as a chronic kidney disease biomarker. Science Translational Medicine, 2015, 7, 316ra193.	12.4	304
170	A reassessment of soluble urokinase-type plasminogen activator receptor in glomerular disease. Kidney International, 2015, 87, 564-574.	5.2	111
171	MicroRNA-21 in Glomerular Injury. Journal of the American Society of Nephrology: JASN, 2015, 26, 805-816.	6.1	133
172	Defining nephrotic syndrome from an integrative genomics perspective. Pediatric Nephrology, 2015, 30, 51-63.	1.7	23
173	The Molecular Phenotype of Endocapillary Proliferation: Novel Therapeutic Targets for IgA Nephropathy. PLoS ONE, 2014, 9, e103413.	2.5	30
174	Alterations in the Ubiquitin Proteasome System in Persistent but Not Reversible Proteinuric Diseases. Journal of the American Society of Nephrology: JASN, 2014, 25, 2511-2525.	6.1	31
175	Targeted Glomerular Angiopoietin-1 Therapy for Early Diabetic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2014, 25, 33-42.	6.1	87
176	Enabling the genomic revolution in Africa. Science, 2014, 344, 1346-1348.	12.6	361
177	Identification of Stageâ€5pecific Genes Associated With Lupus Nephritis and Response to Remission Induction in (NZB × NZW)F1 and NZM2410 Mice. Arthritis and Rheumatology, 2014, 66, 2246-2258.	5.6	50
178	Lupus Nephritis Susceptibility Loci in Women with Systemic Lupus Erythematosus. Journal of the American Society of Nephrology: JASN, 2014, 25, 2859-2870.	6.1	117
179	Integrative Biology Identifies Shared Transcriptional Networks in CKD. Journal of the American Society of Nephrology: JASN, 2014, 25, 2559-2572.	6.1	112
180	Cyclodextrin Protects Podocytes in Diabetic Kidney Disease. Diabetes, 2013, 62, 3817-3827.	0.6	127

#	Article	IF	CITATIONS
181	The peroxisome-proliferator activated receptor-Î ³ agonist pioglitazone modulates aberrant T cell responses in systemic lupus erythematosus. Clinical Immunology, 2013, 149, 119-132.	3.2	40
182	Identification of Cross-Species Shared Transcriptional Networks of Diabetic Nephropathy in Human and Mouse Glomeruli. Diabetes, 2013, 62, 299-308.	0.6	163
183	Divergent functions of the Rho GTPases Rac1 and Cdc42 in podocyte injury. Kidney International, 2013, 84, 920-930.	5.2	125
184	Defining cell-type specificity at the transcriptional level in human disease. Genome Research, 2013, 23, 1862-1873.	5.5	196
185	Systematically Differentiating Functions for Alternatively Spliced Isoforms through Integrating RNA-seq Data. PLoS Computational Biology, 2013, 9, e1003314.	3.2	78
186	Diabetic Nephropathy: A National Dialogue. Clinical Journal of the American Society of Nephrology: CJASN, 2013, 8, 1603-1605.	4.5	13
187	From Single Nucleotide Polymorphism to Transcriptional Mechanism. Diabetes, 2013, 62, 2605-2612.	0.6	42
188	Digital Pathology Evaluation in the Multicenter Nephrotic Syndrome Study Network (NEPTUNE). Clinical Journal of the American Society of Nephrology: CJASN, 2013, 8, 1449-1459.	4.5	80
189	Design of the Nephrotic Syndrome Study Network (NEPTUNE) to evaluate primary glomerular nephropathy by a multidisciplinary approach. Kidney International, 2013, 83, 749-756.	5.2	268
190	Transcriptome Analysis of Proximal Tubular Cells (HK-2) Exposed to Urines of Type 1 Diabetes Patients at Risk of Early Progressive Renal Function Decline. PLoS ONE, 2013, 8, e57751.	2.5	5
191	Comparative Transcriptional Profiling of 3 Murine Models of SLE Nephritis Reveals Both Unique and Shared Regulatory Networks. PLoS ONE, 2013, 8, e77489.	2.5	41
192	Gene-level Integrated Metric of negative Selection (GIMS) Prioritizes Candidate Genes for Nephrotic Syndrome. PLoS ONE, 2013, 8, e81062.	2.5	9
193	Fibroblast Growth Factor 23 and Inflammation in CKD. Clinical Journal of the American Society of Nephrology: CJASN, 2012, 7, 1155-1162.	4.5	217
194	Bcl-2–Modifying Factor Induces Renal Proximal Tubular Cell Apoptosis in Diabetic Mice. Diabetes, 2012, 61, 474-484.	0.6	48
195	Activation of innate immune defense mechanisms contributes to polyomavirus BK-associated nephropathy. Kidney International, 2012, 81, 100-111.	5.2	32
196	The NIH National Center for Integrative Biomedical Informatics (NCIBI). Journal of the American Medical Informatics Association: JAMIA, 2012, 19, 166-170.	4.4	17
197	Perspectives on Systems Biology Applications in Diabetic Kidney Disease. Journal of Cardiovascular Translational Research, 2012, 5, 491-508.	2.4	33
198	Genomic biomarkers for chronic kidney disease. Translational Research, 2012, 159, 290-302.	5.0	32

#	Article	IF	CITATIONS
199	A systems view of genetics in chronic kidney disease. Kidney International, 2012, 81, 14-21.	5.2	43
200	Cross-Species Transcriptional Network Analysis Defines Shared Inflammatory Responses in Murine and Human Lupus Nephritis. Journal of Immunology, 2012, 189, 988-1001.	0.8	196
201	Formal concept analysis of disease similarity. AMIA Summits on Translational Science Proceedings, 2012, 2012, 42-51.	0.4	6
202	The identification of gene expression profiles associated with progression of human diabetic neuropathy. Brain, 2011, 134, 3222-3235.	7.6	132
203	The role of bone morphogenetic protein-5 (BMP-5) in human nephrosclerosis. Journal of Nephrology, 2011, 24, 647-655.	2.0	16
204	Periostin Is Induced in Glomerular Injury and Expressed de Novo in Interstitial Renal Fibrosis. American Journal of Pathology, 2011, 179, 1756-1767.	3.8	90
205	mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. Journal of Clinical Investigation, 2011, 121, 2181-2196.	8.2	462
206	Urine Glycoprotein Profile Reveals Novel Markers for Chronic Kidney Disease. International Journal of Proteomics, 2011, 2011, 1-18.	2.0	35
207	Inflammasome Activation of IL-18 Results in Endothelial Progenitor Cell Dysfunction in Systemic Lupus Erythematosus. Journal of Immunology, 2011, 187, 6143-6156.	0.8	162
208	Netting Neutrophils Induce Endothelial Damage, Infiltrate Tissues, and Expose Immunostimulatory Molecules in Systemic Lupus Erythematosus. Journal of Immunology, 2011, 187, 538-552.	0.8	1,039
209	Intrarenal production of B-cell survival factors in human lupus nephritis. Modern Pathology, 2011, 24, 98-107.	5.5	61
210	Transcriptional Profiling of Diabetic Neuropathy in the BKS <i>db/db</i> Mouse. Diabetes, 2011, 60, 1981-1989.	0.6	107
211	Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. Journal of Clinical Investigation, 2011, 121, 2197-2209.	8.2	467
212	Kindlin-2 regulates podocyte adhesion and fibronectin matrix deposition through interactions with phosphoinositides and integrins. Journal of Cell Science, 2011, 124, 879-891.	2.0	92
213	A cognitive task analysis of a visual analytic workflow: Exploring molecular interaction networks in systems biology. Journal of Biomedical Discovery and Collaboration, 2011, 6, 1-33.	2.0	8
214	α-Actinin-4 and CLP36 Protein Deficiencies Contribute to Podocyte Defects in Multiple Human Glomerulopathies. Journal of Biological Chemistry, 2011, 286, 30795-30805.	3.4	21
215	A Unique Hybrid Renal Mononuclear Phagocyte Activation Phenotype in Murine Systemic Lupus Erythematosus Nephritis. Journal of Immunology, 2011, 186, 4994-5003.	0.8	132
216	Alteration of Forkhead Box O (Foxo4) Acetylation Mediates Apoptosis of Podocytes in Diabetes Mellitus. PLoS ONE, 2011, 6, e23566.	2.5	113

#	Article	IF	CITATIONS
217	Discovering hidden relationships between renal diseases and regulated genes through 3D network visualizations. BMC Research Notes, 2010, 3, 296.	1.4	17
218	A Molecular Signature of Proteinuria in Glomerulonephritis. PLoS ONE, 2010, 5, e13451.	2.5	78
219	Systematic Analysis of a Novel Human Renal Glomerulus-Enriched Gene Expression Dataset. PLoS ONE, 2010, 5, e11545.	2.5	71
220	NFκB Promotes Inflammation, Coagulation, and Fibrosis in the Aging Glomerulus. Journal of the American Society of Nephrology: JASN, 2010, 21, 587-597.	6.1	81
221	The Detrimental Effects of IFN-α on Vasculogenesis in Lupus Are Mediated by Repression of IL-1 Pathways: Potential Role in Atherogenesis and Renal Vascular Rarefaction. Journal of Immunology, 2010, 185, 4457-4469.	0.8	117
222	BASP1 Promotes Apoptosis in Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2010, 21, 610-621.	6.1	81
223	The Ubiquitin-Like Protein FAT10 Mediates NF-κB Activation. Journal of the American Society of Nephrology: JASN, 2010, 21, 316-326.	6.1	81
224	Linking Variants From Genome-Wide Association Analysis to Function via Transcriptional Network Analysis. Seminars in Nephrology, 2010, 30, 177-184.	1.6	12
225	Integrative Biology of Renal Disease: Toward a Holistic Understanding of the Kidney's Function and Failure. Seminars in Nephrology, 2010, 30, 439-442.	1.6	10
226	Human Nephrosclerosis Triggers a Hypoxia-Related Glomerulopathy. American Journal of Pathology, 2010, 176, 594-607.	3.8	95
227	A Molecular Profile of Focal Segmental Glomerulosclerosis from Formalin-Fixed, Paraffin-Embedded Tissue. American Journal of Pathology, 2010, 177, 1674-1686.	3.8	104
228	Transcript-Specific Expression Profiles Derived from Sequence-Based Analysis of Standard Microarrays. PLoS ONE, 2009, 4, e4702.	2.5	20
229	The MIF Receptor CD74 in Diabetic Podocyte Injury. Journal of the American Society of Nephrology: JASN, 2009, 20, 353-362.	6.1	94
230	The Peroxisome Proliferator-Activated Receptor γ Agonist Pioglitazone Improves Cardiometabolic Risk and Renal Inflammation in Murine Lupus. Journal of Immunology, 2009, 183, 2729-2740.	0.8	49
231	Urine Podocyte mRNAs Mark Progression of Renal Disease. Journal of the American Society of Nephrology: JASN, 2009, 20, 1041-1052.	6.1	143
232	How to Build a Tight but Permeable Glomerular Junction. Journal of the American Society of Nephrology: JASN, 2009, 20, 1420-1421.	6.1	1
233	Network analysis of genes regulated in renal diseases: implications for a molecular-based classification. BMC Bioinformatics, 2009, 10, S3.	2.6	33
234	Mouse Models of Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2009, 20, 2503-2512.	6.1	582

#	Article	IF	CITATIONS
235	Enhanced Expression of Janus Kinase–Signal Transducer and Activator of Transcription Pathway Members in Human Diabetic Nephropathy. Diabetes, 2009, 58, 469-477.	0.6	262
236	Palladin is a dynamic actin-associated protein in podocytes. Kidney International, 2009, 75, 214-226.	5.2	47
237	Differential regulation of chemokine CCL5 expression in monocytes/macrophages and renal cells by Y-box protein-1. Kidney International, 2009, 75, 185-196.	5.2	45
238	Renal Gene and Protein Expression Signatures for Prediction of Kidney Disease Progression. American Journal of Pathology, 2009, 174, 2073-2085.	3.8	60
239	A Pilot Study of Gene Expression-Based Categorization of Pancreas Transplant Biopsies. Transplantation, 2009, 87, 222-226.	1.0	10
240	Integrating automated workflows, human intelligence and collaboration. Summit on Translational Bioinformatics, 2009, 2009, 79-83.	0.7	2
241	Defining human diabetic nephropathy on the molecular level: Integration of transcriptomic profiles with biological knowledge. Reviews in Endocrine and Metabolic Disorders, 2008, 9, 267-274.	5.7	68
242	Notch inhibition reverses kidney failure. Nature Medicine, 2008, 14, 246-247.	30.7	19
243	Modification of kidney barrier function by the urokinase receptor. Nature Medicine, 2008, 14, 55-63.	30.7	501
244	Genomic analysis in nephrology – towards systems biology and systematic medicine?. Nephrologie Et Therapeutique, 2008, 4, 306-311.	0.5	13
245	From Fibrosis to Sclerosis. Diabetes, 2008, 57, 1439-1445.	0.6	275
246	Maternal Environment Interacts with Modifier Genes to Influence Progression of Nephrotic Syndrome. Journal of the American Society of Nephrology: JASN, 2008, 19, 1491-1499.	6.1	23
247	IHG-1 Amplifies TGF-β1 Signaling and Is Increased in Renal Fibrosis. Journal of the American Society of Nephrology: JASN, 2008, 19, 1672-1680.	6.1	57
248	Proteinuria and Hyperglycemia Induce Endoplasmic Reticulum Stress. Journal of the American Society of Nephrology: JASN, 2008, 19, 2225-2236.	6.1	228
249	Roles of PINCH-2 in regulation of glomerular cell shape change and fibronectin matrix deposition. American Journal of Physiology - Renal Physiology, 2008, 295, F253-F263.	2.7	11
250	Rosiglitazone reduces renal and plasma markers of oxidative injury and reverses urinary metabolite abnormalities in the amelioration of diabetic nephropathy. American Journal of Physiology - Renal Physiology, 2008, 295, F1071-F1081.	2.7	72
251	The Death Ligand TRAIL in Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2008, 19, 904-914.	6.1	100
252	Improved Elucidation of Biological Processes Linked to Diabetic Nephropathy by Single Probe-Based Microarray Data Analysis. PLoS ONE, 2008, 3, e2937.	2.5	69

#	Article	IF	CITATIONS
253	Periscope/GQ. Proceedings of the VLDB Endowment, 2008, 1, 1404-1407.	3.8	8
254	Induction of TRPC6 Channel in Acquired Forms of Proteinuric Kidney Disease. Journal of the American Society of Nephrology: JASN, 2007, 18, 29-36.	6.1	272
255	Expression of filtrin in human glomerular diseases. Nephrology Dialysis Transplantation, 2007, 22, 1903-1909.	0.7	13
256	Interstitial Vascular Rarefaction and Reduced VEGF-A Expression in Human Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2007, 18, 1765-1776.	6.1	215
257	Expression of the chemokine receptor CCR1 in human renal allografts. Nephrology Dialysis Transplantation, 2007, 22, 1720-1729.	0.7	19
258	TGF-β1 Regulates the PINCH-1–Integrin-Linked Kinase–α-Parvin Complex in Glomerular Cells. Journal of the American Society of Nephrology: JASN, 2007, 18, 66-73.	6.1	34
259	Proteolytic processing of dynamin by cytoplasmic cathepsin L is a mechanism for proteinuric kidney disease. Journal of Clinical Investigation, 2007, 117, 2095-2104.	8.2	188
260	Differentially Spliced Isoforms of FAT1 Are Asymmetrically Distributed within Migrating Cells. Journal of Biological Chemistry, 2007, 282, 22823-22833.	3.4	29
261	The Contribution of B Cells to Renal Interstitial Inflammation. American Journal of Pathology, 2007, 170, 457-468.	3.8	108
262	Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. Journal of Clinical Investigation, 2007, 117, 3810-20.	8.2	778
263	Novel Role of Toll-Like Receptor 3 in Hepatitis C-Associated Glomerulonephritis. American Journal of Pathology, 2006, 168, 370-385.	3.8	150
264	Molecular approaches to chronic kidney disease. Current Opinion in Nephrology and Hypertension, 2006, 15, 123-129.	2.0	20
265	Differential Expression of Profibrotic and Growth Factors in Chronic Allograft Nephropathy. Transplantation, 2006, 81, 342-349.	1.0	52
266	Loss of the tumor suppressor Vhlh leads to upregulation of Cxcr4 and rapidly progressive glomerulonephritis in mice. Nature Medicine, 2006, 12, 1081-1087.	30.7	191
267	Gene expression profiling analysis in nephrology: towards molecular definition of renal disease. Clinical and Experimental Nephrology, 2006, 10, 91-98.	1.6	65
268	Antitumoral Activity of Rapamycin in Renal Angiomyolipoma Associated With Tuberous Sclerosis Complex. American Journal of Kidney Diseases, 2006, 48, e27-e29.	1.9	112
269	Expression and regulation of Toll-like receptors in lupus-like immune complex glomerulonephritis of MRL-Fas(lpr) mice. Nephrology Dialysis Transplantation, 2006, 21, 3062-3073.	0.7	113
270	Toll-Like Receptor-7 Modulates Immune Complex Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2006, 17, 141-149.	6.1	121

#	Article	IF	CITATIONS
271	Modular Activation of Nuclear Factor-l [®] B Transcriptional Programs in Human Diabetic Nephropathy. Diabetes, 2006, 55, 2993-3003.	0.6	386
272	Role of Endothelin Receptors for Renal Protection and Survival in Hypertension. Hypertension, 2006, 48, 834-837.	2.7	18
273	Podocyte-Specific Deletion of Integrin-Linked Kinase Results in Severe Glomerular Basement Membrane Alterations and Progressive Glomerulosclerosis. Journal of the American Society of Nephrology: JASN, 2006, 17, 1334-1344.	6.1	137
274	Comparative promoter analysis allows de novo identification of specialized cell junction-associated proteins. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5682-5687.	7.1	114
275	Polyomavirus DNA and RNA Detection in Renal Allograft Biopsies: Results from a European Multicenter Study. Transplantation, 2005, 80, 600-604.	1.0	25
276	Integrin-linked kinase in renal disease: connecting cell–matrix interaction to the cytoskeleton. Current Opinion in Nephrology and Hypertension, 2005, 14, 404-410.	2.0	41
277	Toll-like receptor-4: Renal cells and bone marrow cells signal for neutrophil recruitment during pyelonephritis. Kidney International, 2005, 68, 2582-2587.	5.2	90
278	Functional consequences of integrin-linked kinase activation in podocyte damage. Kidney International, 2005, 67, 514-523.	5.2	71
279	Expression of Gremlin, a Bone Morphogenetic Protein Antagonist, in Human Diabetic Nephropathy. American Journal of Kidney Diseases, 2005, 45, 1034-1039.	1.9	125
280	BK Virus Associated Nephropathy in Native Kidneys of a Heart Allograft Recipient. American Journal of Transplantation, 2005, 5, 1562-1568.	4.7	46
281	Delayed Chemokine Receptor 1 Blockade Prolongs Survival in Collagen 4A3–Deficient Mice with Alport Disease. Journal of the American Society of Nephrology: JASN, 2005, 16, 977-985.	6.1	94
282	Sam68-Like Mammalian Protein 2, Identified by Digital Differential Display as Expressed by Podocytes, Is Induced in Proteinuria and Involved in Splice Site Selection of Vascular Endothelial Growth Factor. Journal of the American Society of Nephrology: JASN, 2005, 16, 1958-1965.	6.1	21
283	Role of Podocytes in Focal Sclerosis. Journal of the American Society of Nephrology: JASN, 2005, 16, 2830-2832.	6.1	42
284	Formation and Phosphorylation of the PINCH-1–Integrin Linked Kinase–α-Parvin Complex Are Important for Regulation of Renal Clomerular Podocyte Adhesion, Architecture, and Survival. Journal of the American Society of Nephrology: JASN, 2005, 16, 1966-1976.	6.1	58
285	Viral Double-Stranded RNA Aggravates Lupus Nephritis through Toll-Like Receptor 3 on Glomerular Mesangial Cells and Antigen-Presenting Cells. Journal of the American Society of Nephrology: JASN, 2005, 16, 1326-1338.	6.1	207
286	CD20-positive infiltrates in human membranous glomerulonephritis. Journal of Nephrology, 2005, 18, 328-33.	2.0	58
287	Chemokine Receptor CCR1 But Not CCR5 Mediates Leukocyte Recruitment and Subsequent Renal Fibrosis after Unilateral Ureteral Obstruction. Journal of the American Society of Nephrology: JASN, 2004, 15, 337-347.	6.1	124
288	Late Onset of Treatment with a Chemokine Receptor CCR1 Antagonist Prevents Progression of Lupus Nephritis in MRL-Fas(lpr) Mice. Journal of the American Society of Nephrology: JASN, 2004, 15, 1504-1513.	6.1	105

#	Article	IF	CITATIONS
289	Role of Podocytes for Reversal of Glomerulosclerosis and Proteinuria in the Aging Kidney After Endothelin Inhibition. Hypertension, 2004, 44, 974-981.	2.7	135
290	Activation of tollâ€like receptorâ€9 induces progression of renal disease in MRLâ€Fas(lpr) mice. FASEB Journal, 2004, 18, 534-536.	0.5	204
291	Gene expression analysis in renal biopsies. Nephrology Dialysis Transplantation, 2004, 19, 1347-1351.	0.7	31
292	Early Glomerular Filtration Defect and Severe Renal Disease in Podocin-Deficient Mice. Molecular and Cellular Biology, 2004, 24, 550-560.	2.3	223
293	Gene expression fingerprints in human tubulointerstitial inflammation and fibrosis as prognostic markers of disease progression. Kidney International, 2004, 65, 904-917.	5.2	75
294	Binding of the chemokine SLC/CCL21 to its receptor CCR7 increases adhesive properties of human mesangial cells. Kidney International, 2004, 66, 2256-2263.	5.2	20
295	CCR1 blockade reduces interstitial inflammation and fibrosis in mice with glomerulosclerosis and nephrotic syndrome. Kidney International, 2004, 66, 2264-2278.	5.2	129
296	Reduced intragraft mRNA expression of matrix metalloproteinases Mmp3, Mmp12, Mmp13 and Adam8, and diminished transplant arteriosclerosis in Ccr5-deficient mice. European Journal of Immunology, 2004, 34, 2568-2578.	2.9	38
297	Bioinformatic Analysis of the Urine Proteome of Acute Allograft Rejection. Journal of the American Society of Nephrology: JASN, 2004, 15, 3240-3248.	6.1	128
298	CXCR3 Is Involved in Tubulointerstitial Injury in Human Glomerulonephritis. American Journal of Pathology, 2004, 164, 635-649.	3.8	108
299	Influence of Native and Hypochlorite-Modified Low-Density Lipoprotein on Gene Expression in Human Proximal Tubular Epithelium. American Journal of Pathology, 2004, 164, 2175-2187.	3.8	48
300	Gene expression analysis of human renal biopsies: recent developments towards molecular diagnosis of kidney disease. Current Opinion in Nephrology and Hypertension, 2004, 13, 313-318.	2.0	21
301	Induction of B7-1 in podocytes is associated with nephrotic syndrome. Journal of Clinical Investigation, 2004, 113, 1390-1397.	8.2	495
302	New immunosuppressive strategies in renal transplant recipients. Journal of Nephrology, 2004, 17, 9-18.	2.0	15
303	Post-translational and cell type-specific regulation of CXCR4 expression by cytokines. European Journal of Immunology, 2003, 33, 3028-3037.	2.9	45
304	Validation of endogenous controls for gene expression analysis in microdissected human renal biopsies. Kidney International, 2003, 64, 356-360.	5.2	139
305	Modification of the transcriptomic response to renal ischemia/reperfusion injury by lipoxin analog. Kidney International, 2003, 64, 480-492.	5.2	138
306	Glomerular Podocytes Possess the Synaptic Vesicle Molecule Rab3A and Its Specific Effector Rabphilin-3a. American Journal of Pathology, 2003, 163, 889-899.	3.8	53

#	Article	IF	CITATIONS
307	Cell Biology of the Glomerular Podocyte. Physiological Reviews, 2003, 83, 253-307.	28.8	1,285
308	PDGF-C Expression in the Developing and Normal Adult Human Kidney and in Glomerular Diseases. Journal of the American Society of Nephrology: JASN, 2003, 14, 1145-1153.	6.1	69
309	Bacterial CpG-DNA Aggravates Immune Complex Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2003, 14, 317-326.	6.1	95
310	Stra13, a prostaglandin E2â€induced gene, regulates the cellular redox state of podocytes. FASEB Journal, 2003, 17, 682-684.	0.5	31
311	Gene Expression Profiles of Podocyte-Associated Molecules as Diagnostic Markers in Acquired Proteinuric Diseases. Journal of the American Society of Nephrology: JASN, 2003, 14, 2958-2966.	6.1	120
312	Repuncturing the Renal Biopsy: Strategies for Molecular Diagnosis in Nephrology. Journal of the American Society of Nephrology: JASN, 2002, 13, 1961-1972.	6.1	54
313	Roles of SLC/CCL21 and CCR7 in Human Kidney for Mesangial Proliferation, Migration, Apoptosis, and Tissue Homeostasis. Journal of Immunology, 2002, 168, 4301-4307.	0.8	83
314	Identification of a Signal Transduction Pathway That Regulates MMP-9 mRNA Expression in Glomerular Injury. Biological Chemistry, 2002, 383, 1271-5.	2.5	14
315	Decrease and Gain of Gene Expression Are Equally Discriminatory Markers for Prostate Carcinoma. American Journal of Pathology, 2002, 160, 2169-2180.	3.8	245
316	TRAIL-induced apoptosis is independent of the mitochondrial apoptosis mediator DAP3. Biochemical and Biophysical Research Communications, 2002, 297, 880-884.	2.1	14
317	Characterization of a Na+-Ca2+ exchanger in podocytes. Nephrology Dialysis Transplantation, 2002, 17, 1742-1750.	0.7	15
318	Regulation of adhesive interaction between podocytes and glomerular basement membrane. Microscopy Research and Technique, 2002, 57, 247-253.	2.2	70
319	Laser microdissection and gene expression analysis on formaldehyde-fixed archival tissue. Kidney International, 2002, 61, 125-132.	5.2	93
320	Quantitative gene expression analysis in renal biopsies: A novel protocol for a high-throughput multicenter application. Kidney International, 2002, 61, 133-140.	5.2	247
321	Vascular endothelial growth factor production and regulation in human peritoneal mesothelial cells. Kidney International, 2002, 61, 570-578.	5.2	116
322	Interaction of DAP3 and FADD only after cellular disruption. Nature Immunology, 2002, 3, 3-4.	14.5	16
323	A chemokine receptor CCR-1 antagonist reduces renal fibrosis after unilateral ureter ligation. Journal of Clinical Investigation, 2002, 109, 251-259.	8.2	99
324	Spatial and Temporally Restricted Expression of Chemokines and Chemokine Receptors in the Developing Human Kidney. Journal of the American Society of Nephrology: JASN, 2002, 13, 957-967.	6.1	50

#	Article	IF	CITATIONS
325	Integrin linked kinase as a candidate downstream effector in proteinuria. FASEB Journal, 2001, 15, 1843-1845.	0.5	101
326	Chemokine and Chemokine Receptor Expression during Initiation and Resolution of Immune Complex Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2001, 12, 919-931.	6.1	73
327	Expression of chemokines and their receptors in nephrotoxic serum nephritis. Nephrology Dialysis Transplantation, 2000, 15, 1046-1053.	0.7	29
328	Molecular cloning, expression, and distribution of glomerular epithelial protein 1 in developing mouse kidney. Kidney International, 2000, 57, 1847-1859.	5.2	35
329	The Glomerular Slit Diaphragm Is a Modified Adherens Junction. Journal of the American Society of Nephrology: JASN, 2000, 11, 1-8.	6.1	384
330	Altered gene expression and functions of mitochondria in human nephrotic syndrome. FASEB Journal, 1999, 13, 523-532.	0.5	53
331	mRNA Differential Display Analysis of Nephrotic Kidney Glomeruli. Nephron Experimental Nephrology, 1999, 7, 52-58.	2.2	11
332	Re-expression of the developmental gene Pax-2 during experimental acute tubular necrosis in mice1. Kidney International, 1999, 56, 1423-1431.	5.2	176
333	Analysis of mouse glomerular podocyte mRNA by single-cell reverse transcription-polymerase chain reaction. Kidney International, 1998, 53, 119-124.	5.2	29
334	Expression of glucose transporters in human peritoneal mesothelial cells. Kidney International, 1998, 53, 1278-1287.	5.2	45
335	Detection of multiple vascular endothelial growth factor splice isoforms in single glomerular podocytes. Kidney International, 1998, 54, S159-S161.	5.2	61
336	A Frequent Pathway to Glomerulosclerosis: Deterioration of Tuft Architecture – Podocyte Damage – Segmental Sclerosis. Kidney and Blood Pressure Research, 1996, 19, 245-253.	2.0	68
337	Stability and leakiness: Opposing challenges to the glomerulus. Kidney International, 1996, 49, 1570-1574.	5.2	41