
Andrea Cavalli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9126685/publications.pdf Version: 2024-02-01

ΔΝΟΡΕΛ ΟΛΥΛΙΙΙ

#	Article	IF	CITATIONS
1	Recognition and inhibition of SARS-CoV-2 by humoral innate immunity pattern recognition molecules. Nature Immunology, 2022, 23, 275-286.	14.5	95
2	Computational Identification of a Putative Allosteric Binding Pocket in TMPRSS2. Frontiers in Molecular Biosciences, 2021, 8, 666626.	3.5	3
3	Machine learning analyses of antibody somatic mutations predict immunoglobulin light chain toxicity. Nature Communications, 2021, 12, 3532.	12.8	23
4	EZH2-induced lysine K362 methylation enhances TMPRSS2-ERG oncogenic activity in prostate cancer. Nature Communications, 2021, 12, 4147.	12.8	17
5	Compounds targeting OSBPL7 increase ABCA1-dependent cholesterol efflux preserving kidney function in two models of kidney disease. Nature Communications, 2021, 12, 4662.	12.8	24
6	Systematic Development of Peptide Inhibitors Targeting the CXCL12/HMGB1 Interaction. Journal of Medicinal Chemistry, 2021, 64, 13439-13450.	6.4	8
7	Zinc(<scp>ii</scp>)-mediated diastereoselective Passerini reactions of biocatalytically desymmetrised renewable inputs. Organic Chemistry Frontiers, 2020, 7, 380-398.	4.5	14
8	Oxidation State Dependent Conformational Changes of HMGB1 Regulate the Formation of the CXCL12/HMGB1 Heterocomplex. Computational and Structural Biotechnology Journal, 2019, 17, 886-894.	4.1	20
9	Compartmentalized activities of the pyruvate dehydrogenase complex sustain lipogenesis in prostate cancer. Nature Genetics, 2018, 50, 219-228.	21.4	139
10	How phosphorylation influences E1 subunit pyruvate dehydrogenase: A computational study. Scientific Reports, 2018, 8, 14683.	3.3	17
11	Structural Biology of STAT3 and Its Implications for Anticancer Therapies Development. International Journal of Molecular Sciences, 2018, 19, 1591.	4.1	92
12	Enhancing coevolution-based contact prediction by imposing structural self-consistency of the contacts. Scientific Reports, 2018, 8, 11112.	3.3	3
13	Protein Tunnels: The Case of Urease Accessory Proteins. Journal of Chemical Theory and Computation, 2017, 13, 2322-2331.	5.3	25
14	Single or Multiple Access Channels to the CYP450s Active Site? An Answer from Free Energy Simulations of the Human Aromatase Enzyme. Journal of Physical Chemistry Letters, 2017, 8, 2036-2042.	4.6	41
15	The Dynamic Basis for Signal Propagation in Human Pin1-WW. Structure, 2016, 24, 1464-1475.	3.3	20
16	Metainference: A Bayesian inference method for heterogeneous systems. Science Advances, 2016, 2, e1501177.	10.3	180
17	Dynamic binding mode of a Synaptotagmin-1–SNARE complex in solution. Nature Structural and Molecular Biology, 2015, 22, 555-564.	8.2	129
18	Analysis of the performance of the CHESHIRE and YAPP methods at CASD-NMR round 3. Journal of Biomolecular NMR, 2015, 62, 503-509.	2.8	6

ANDREA CAVALLI

#	Article	IF	CITATIONS
19	Insights into the coiled-coil organization of the Hendra virus phosphoprotein from combined biochemical and SAXS studies. Virology, 2015, 477, 42-55.	2.4	12
20	Molecular Dynamics of Biomolecules through Direct Analysis of Dipolar Couplings. Journal of the American Chemical Society, 2015, 137, 6270-6278.	13.7	23
21	Molecular Determinants for Unphosphorylated STAT3 Dimerization Determined by Integrative Modeling. Biochemistry, 2015, 54, 5489-5501.	2.5	15
22	Archaeal MBF1 binds to 30S and 70S ribosomes via its helix–turn–helix domain. Biochemical Journal, 2014, 462, 373-384.	3.7	16
23	Characterization of the Conformational Fluctuations in the Josephin Domain of Ataxin-3. Biophysical Journal, 2014, 107, 2932-2940.	0.5	15
24	Determination of the Individual Roles of the Linker Residues in the Interdomain Motions of Calmodulin Using NMR Chemical Shifts. Journal of Molecular Biology, 2014, 426, 1826-1838.	4.2	25
25	ALMOST: An all atom molecular simulation toolkit for protein structure determination. Journal of Computational Chemistry, 2014, 35, 1101-1105.	3.3	31
26	Probabilistic Determination of Native State Ensembles of Proteins. Journal of Chemical Theory and Computation, 2014, 10, 3484-3491.	5.3	38
27	Assessment of the Use of NMR Chemical Shifts as Replica-Averaged Structural Restraints in Molecular Dynamics Simulations to Characterize the Dynamics of Proteins. Journal of Physical Chemistry B, 2013, 117, 1838-1843.	2.6	41
28	Molecular dynamics simulations with replica-averaged structural restraints generate structural ensembles according to the maximum entropy principle. Journal of Chemical Physics, 2013, 138, 094112.	3.0	169
29	Replica-Averaged Metadynamics. Journal of Chemical Theory and Computation, 2013, 9, 5610-5617.	5.3	64
30	Characterization of the Conformational Equilibrium between the Two Major Substates of RNase A Using NMR Chemical Shifts. Journal of the American Chemical Society, 2012, 134, 3968-3971.	13.7	84
31	Structure of an Intermediate State in Protein Folding and Aggregation. Science, 2012, 336, 362-366.	12.6	339
32	Blind Testing of Routine, Fully Automated Determination of Protein Structures from NMR Data. Structure, 2012, 20, 227-236.	3.3	75
33	Using Chemical Shifts to Determine Structural Changes in Proteins upon Complex Formation. Journal of Physical Chemistry B, 2011, 115, 9491-9494.	2.6	15
34	Structure-based prediction of methyl chemical shifts in proteins. Journal of Biomolecular NMR, 2011, 50, 331-346.	2.8	65
35	Using Sideâ€Chain Aromatic Proton Chemical Shifts for a Quantitative Analysis of Protein Structures. Angewandte Chemie - International Edition, 2011, 50, 9620-9623.	13.8	20
36	Using NMR Chemical Shifts as Structural Restraints in Molecular Dynamics Simulations of Proteins. Structure, 2010, 18, 923-933.	3.3	141

ANDREA CAVALLI

#	Article	IF	CITATIONS
37	CASD-NMR: critical assessment of automated structure determination by NMR. Nature Methods, 2009, 6, 625-626.	19.0	80
38	Fast and Accurate Predictions of Protein NMR Chemical Shifts from Interatomic Distances. Journal of the American Chemical Society, 2009, 131, 13894-13895.	13.7	223
39	Structure Determination of Proteinâ ``Protein Complexes Using NMR Chemical Shifts: Case of an Endonuclease Colicinâ ``Immunity Protein Complex. Journal of the American Chemical Society, 2008, 130, 15990-15996.	13.7	55
40	Protein structure determination from NMR chemical shifts. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9615-9620.	7.1	499
41	Prediction of aggregation rate and aggregation-prone segments in polypeptide sequences. Protein Science, 2005, 14, 2723-2734.	7.6	201