Reuben Epstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9126420/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Causes of fuel–ablator mix inferred from modeling of monochromatic time-gated radiography of OMEGA cryogenic implosions. Physics of Plasmas, 2022, 29, .	1.9	8
2	A case study of using x-ray Thomson scattering to diagnose the in-flight plasma conditions of DT cryogenic implosions. Physics of Plasmas, 2022, 29, 072703.	1.9	7
3	Bound on hot-spot mix in high-velocity, high-adiabat direct-drive cryogenic implosions based on comparison of absolute x-ray and neutron yields. Physical Review E, 2022, 106, .	2.1	2
4	Direct Measurements of DT Fuel Preheat from Hot Electrons in Direct-Drive Inertial Confinement Fusion. Physical Review Letters, 2021, 127, 055001.	7.8	18
5	Experimentally Inferred Fusion Yield Dependencies of OMEGA Inertial Confinement Fusion Implosions. Physical Review Letters, 2021, 127, 105001.	7.8	23
6	Parameterizing hot electron energy distributions for tabular emissivities and opacities. High Energy Density Physics, 2020, 35, 100730.	1.5	3
7	Effect of cross-beam energy transfer on target-offset asymmetry in direct-drive inertial confinement fusion implosions. Physics of Plasmas, 2020, 27, 112713.	1.9	6
8	Hot-electron generation at direct-drive ignition-relevant plasma conditions at the National Ignition Facility. Physics of Plasmas, 2020, 27, .	1.9	27
9	Inferred UV fluence focal-spot profiles from soft x-ray pinhole-camera measurements on OMEGA. Review of Scientific Instruments, 2020, 91, 023505.	1.3	3
10	Self-radiography of imploded shells on OMEGA based on additive-free multi-monochromatic continuum spectral analysis. Physics of Plasmas, 2020, 27, .	1.9	1
11	Interpreting the electron temperature inferred from x-ray continuum emission for direct-drive inertial confinement fusion implosions on OMEGA. Physics of Plasmas, 2019, 26, .	1.9	12
12	Tripled yield in direct-drive laser fusion through statistical modelling. Nature, 2019, 565, 581-586.	27.8	103
13	X-ray spectroscopy of planar laser-plasma interaction experiments at the National Ignition Facility. Physics of Plasmas, 2019, 26, .	1.9	3
14	The National Direct-Drive Inertial Confinement Fusion Program. Nuclear Fusion, 2019, 59, 032007.	3.5	10
15	Origins and Scaling of Hot-Electron Preheat in Ignition-Scale Direct-Drive Inertial Confinement Fusion Experiments. Physical Review Letters, 2018, 120, 055001.	7.8	104
16	The National Direct-Drive Program: OMEGA to the National Ignition Facility. Fusion Science and Technology, 2018, 73, 89-97.	1.1	12
17	Properties of hot-spot emission in a warm plastic-shell implosion on the OMEGA laser system. Physical Review E, 2018, 98, .	2.1	2
18	Effects of residual kinetic energy on yield degradation and ion temperature asymmetries in inertial confinement fusion implosions. Physics of Plasmas, 2018, 25, .	1.9	33

#	Article	IF	CITATIONS
19	The role of hot spot mix in the low-foot and high-foot implosions on the NIF. Physics of Plasmas, 2017, 24, .	1.9	49
20	Three-dimensional hydrodynamic simulations of OMEGA implosions. Physics of Plasmas, 2017, 24, .	1.9	26
21	Monochromatic backlighting of direct-drive cryogenic DT implosions on OMEGA. Physics of Plasmas, 2017, 24, .	1.9	21
22	Simulation and analysis of time-gated monochromatic radiographs of cryogenic implosions on OMEGA. High Energy Density Physics, 2017, 23, 167-177.	1.5	4
23	Simultaneous diagnosis of radial profiles and mix in NIF ignition-scale implosions via X-ray spectroscopy. Physics of Plasmas, 2017, 24, .	1.9	9
24	National direct-drive program on OMEGA and the National Ignition Facility. Plasma Physics and Controlled Fusion, 2017, 59, 014008.	2.1	50
25	Direct-drive implosion physics: Results from OMEGA and the National Ignition Facility. Journal of Physics: Conference Series, 2016, 688, 012006.	0.4	4
26	Isolating and quantifying cross-beam energy transfer in direct-drive implosions on OMEGA and the National Ignition Facility. Physics of Plasmas, 2016, 23, .	1.9	19
27	Polar-direct-drive experiments with contoured-shell targets on OMEGA. Physics of Plasmas, 2016, 23, 012711.	1.9	10
28	Demonstration of Fuel Hot-Spot Pressure in Excess of 50ÂGbar for Direct-Drive, Layered Deuterium-Tritium Implosions on OMEGA. Physical Review Letters, 2016, 117, 025001.	7.8	72
29	Hydrodynamic simulations of long-scale-length plasmas for two-plasmon-decay planar-target experiments on the NIF. Journal of Physics: Conference Series, 2016, 717, 012053.	0.4	6
30	X-ray self-emission imaging used to diagnose 3-D nonuniformities in direct-drive ICF implosions. Review of Scientific Instruments, 2016, 87, 11E340.	1.3	7
31	Measurements of the ablation-front trajectory and low-mode nonuniformity in direct-drive implosions using x-ray self-emission shadowgraphy. High Power Laser Science and Engineering, 2015, 3,	4.6	22
32		1.9	52
33	X-ray continuum as a measure of pressure and fuel–shell mix in compressed isobaric hydrogen implosion cores. Physics of Plasmas, 2015, 22, .	1.9	14
34	Direct-drive–ignition designs with mid- <i>Z</i> ablators. Physics of Plasmas, 2015, 22, .	1.9	25
35	Mass-ablation-rate measurements in direct-drive cryogenic implosions using x-ray self-emission images. Review of Scientific Instruments, 2014, 85, 11D616.	1.3	2
36	Soft x-ray backlighting of cryogenic implosions using a narrowband crystal imaging system (invited). Review of Scientific Instruments, 2014, 85, 11E501.	1.3	24

#	Article	lF	CITATIONS
37	Theory of hydro-equivalent ignition for inertial fusion and its applications to OMEGA and the National Ignition Facility. Physics of Plasmas, 2014, 21, .	1.9	68
38	X-ray area backlighter development at the National Ignition Facility (invited). Review of Scientific Instruments, 2014, 85, 11D502.	1.3	22
39	Improving the hot-spot pressure and demonstrating ignition hydrodynamic equivalence in cryogenic deuterium–tritium implosions on OMEGA. Physics of Plasmas, 2014, 21, .	1.9	139
40	First-principles opacity table of warm dense deuterium for inertial-confinement-fusion applications. Physical Review E, 2014, 90, 033111.	2.1	53
41	Hot-Spot Mix in Ignition-Scale Inertial Confinement Fusion Targets. Physical Review Letters, 2013, 111, 045001.	7.8	135
42	Onset of Hydrodynamic Mix in High-Velocity, Highly Compressed Inertial Confinement Fusion Implosions. Physical Review Letters, 2013, 111, 085004.	7.8	215
43	Demonstration of the Improved Rocket Efficiency in Direct-Drive Implosions Using Different Ablator Materials. Physical Review Letters, 2013, 111, 245005.	7.8	33
44	Experimental investigation of bright spots in broadband, gated x-ray images of ignition-scale implosions on the National Ignition Facility. Physics of Plasmas, 2013, 20, 072706.	1.9	19
45	Improving cryogenic deuterium–tritium implosion performance on OMEGA. Physics of Plasmas, 2013, 20, .	1.9	48
46	Progress towards polar-drive ignition for the NIF. Nuclear Fusion, 2013, 53, 113021.	3.5	20
47	Polar-drive implosions on OMEGA and the National Ignition Facility. Physics of Plasmas, 2013, 20, .	1.9	28
48	Soft x-ray backlighting of direct-drive implosions using a spherical crystal imager on OMEGA. Review of Scientific Instruments, 2012, 83, 10E501.	1.3	13
49	Shell trajectory measurements from direct-drive implosion experiments. Review of Scientific Instruments, 2012, 83, 10E530.	1.3	36
50	Crossed-beam energy transfer in direct-drive implosions. Physics of Plasmas, 2012, 19, .	1.9	133
51	Hot-spot mix in ignition-scale implosions on the NIF. Physics of Plasmas, 2012, 19, .	1.9	107
52	Diagnosing and controlling mix in National Ignition Facility implosion experiments. Physics of Plasmas, 2011, 18, .	1.9	92
53	Spectroscopic observations of Fermi-degenerate aluminum compressed and heated to four times solid density and 20ÅeV. High Energy Density Physics, 2011, 7, 259-262.	1.5	3
54	Shock-tuned cryogenic-deuterium-tritium implosion performance on Omega. Physics of Plasmas, 2010, 17, 056312.	1.9	33

#	Article	IF	CITATIONS
55	The effects of target mounts in direct-drive implosions on OMEGA. Physics of Plasmas, 2009, 16, .	1.9	45
56	Neutron yield study of direct-drive, low-adiabat cryogenic D2 implosions on OMEGA laser system. Physics of Plasmas, 2009, 16, 112706.	1.9	27
57	Applied plasma spectroscopy: Laser-fusion experiments. High Energy Density Physics, 2009, 5, 234-243.	1.5	10
58	Plasma-Density Determination from X-Ray Radiography of Laser-Driven Spherical Implosions. Physical Review Letters, 2009, 102, 185004.	7.8	68
59	Performance of direct-drive cryogenic targets on OMEGA. Physics of Plasmas, 2008, 15, .	1.9	92
60	Diagnosing direct-drive, shock-heated, and compressed plastic planar foils with noncollective spectrally resolved x-ray scattering. Physics of Plasmas, 2007, 14, 122703.	1.9	37
61	Progress in hydrodynamics theory and experiments for direct-drive and fast ignition inertial confinement fusion. Plasma Physics and Controlled Fusion, 2006, 48, B153-B163.	2.1	27
62	Polar-direct-drive experiments on OMEGA. European Physical Journal Special Topics, 2006, 133, 153-157.	0.2	19
63	Polar-direct-drive simulations and experiments. Physics of Plasmas, 2006, 13, 056311.	1.9	58
64	Test of Thermal Transport Models through Dynamic Overpressure Stabilization of Ablation-Front Perturbation Growth in Laser-Driven CH Foils. Physical Review Letters, 2006, 96, 115005.	7.8	32
65	Direct-drive inertial confinement fusion research at the Laboratory for Laser Energetics: charting the path to thermonuclear ignition. Nuclear Fusion, 2005, 45, S283-S290.	3.5	27
66	Polar direct drive: Proof-of-principle experiments on OMEGA and prospects for ignition on the National Ignition Facility. Physics of Plasmas, 2005, 12, 056304.	1.9	46
67	Direct-drive, cryogenic target implosions on OMEGA. Physics of Plasmas, 2005, 12, 056302.	1.9	27
68	Multidimensional analysis of direct-drive, plastic-shell implosions on OMEGA. Physics of Plasmas, 2005, 12, 056307.	1.9	95
69	Dependence of Shell Mix on Feedthrough in Direct Drive Inertial Confinement Fusion. Physical Review Letters, 2004, 92, 185002.	7.8	29
70	Direct-drive cryogenic target implosion performance on OMEGA. Physics of Plasmas, 2004, 11, 2790-2797.	1.9	39
71	On the Bell–Plesset effects: The effects of uniform compression and geometrical convergence on the classical Rayleigh–Taylor instability. Physics of Plasmas, 2004, 11, 5114-5124.	1.9	97
72	Direct-drive-implosion experiments with enhanced fluence balance on OMEGA. Physics of Plasmas, 2004, 11, 251-259.	1.9	56

#	Article	IF	CITATIONS
73	Direct-drive cryogenic target implosion performance on OMEGA. Physics of Plasmas, 2003, 10, 1937-1945.	1.9	32
74	First results from cryogenic target implosions on OMEGA. Physics of Plasmas, 2002, 9, 2195-2201.	1.9	49
75	Characterization of direct-drive-implosion core conditions on OMEGA with time-resolved ArK-shell spectroscopy. Physics of Plasmas, 2002, 9, 1357-1365.	1.9	65
76	Inference of mix in direct-drive implosions on OMEGA. Physics of Plasmas, 2002, 9, 2208-2213.	1.9	48
77	OMEGA ICF experiments and preparation for direct drive ignition on NIF. Nuclear Fusion, 2001, 41, 1413-1422.	3.5	45
78	Inferences of mix in direct-drive spherical implosions with high uniformity. Plasma Physics and Controlled Fusion, 2001, 43, A277-A286.	2.1	4
79	Core performance and mix in direct-drive spherical implosions with high uniformity. Physics of Plasmas, 2001, 8, 2251-2256.	1.9	84
80	Laser uniformity and hydrodynamic stability experiments at the OMEGA laser facility. Laser and Particle Beams, 2000, 18, 11-19.	1.0	3
81	Direct-drive high-convergence-ratio implosion studies on the OMEGA laser system. Physics of Plasmas, 2000, 7, 2108-2113.	1.9	23
82	Inertial confinement fusion experiments with OMEGA-A 30-kJ, 60-beam UV laser. Fusion Engineering and Design, 1999, 44, 35-42.	1.9	22
83	Measurements of core and pusher conditions in surrogate capsule implosions on the OMEGA laser system. Physics of Plasmas, 1998, 5, 1870-1879.	1.9	36
84	Signatures of target performance and mixing in titanium-doped, laser-driven target implosions. Physics of Plasmas, 1997, 4, 3021-3030.	1.9	21
85	Reduction of time-averaged irradiation speckle nonuniformity in laser-driven plasmas due to target ablation. Journal of Applied Physics, 1997, 82, 2123-2139.	2.5	31
86	Novel Methods for Diagnosing Mixing and Laser-Fusion Target Performance Using X-ray Spectroscopy of an Embedded Titanium Layer. Optics and Photonics News, 1997, 8, 42.	0.5	13
87	Areal-density measurement of laser targets using absorption lines. Journal of Quantitative Spectroscopy and Radiative Transfer, 1997, 58, 75-83.	2.3	6
88	Satellite spectral lines in high density laser-produced plasmas. Journal of Quantitative Spectroscopy and Radiative Transfer, 1997, 58, 559-570.	2.3	14
89	Directâ€drive laserâ€fusion experiments with the OMEGA, 60â€beam, >40 kJ, ultraviolet laser system. Physics of Plasmas, 1996, 3, 2108-2112.	1.9	182
90	High temperature of laser-compressed shells measured withKr34+andKr35+x-ray lines. Physical Review E, 1996, 54, 5848-5850.	2.1	12

#	Article	IF	CITATIONS
91	Effects of ion dynamics and opacity on Stark-broadened argon line profiles. Physical Review E, 1996, 53, 1042-1050.	2.1	58
92	Diagnosis of High-Temperature Implosions Using Low- and High-Opacity Krypton Lines. Journal of X-Ray Science and Technology, 1996, 6, 172-187.	1.0	8
93	Diagnosis of core-shell mixing using absorption and emission spectra of a doped layer. Journal of Quantitative Spectroscopy and Radiative Transfer, 1996, 55, 731-739.	2.3	5
94	Spectroscopic analysis of hot dense plasmas: A focus on ion dynamics. Laser and Particle Beams, 1996, 14, 713-730.	1.0	3
95	X-ray backlighting imaging of mixed imploded targets. Laser and Particle Beams, 1996, 14, 81-91.	1.0	5
96	Monochromatic Backlighting as a Laser-Fusion Diagnostic. Journal of X-Ray Science and Technology, 1995, 5, 73-87.	1.0	2
97	Spectroscopic analysis of Arâ€doped laserâ€driven implosions. Review of Scientific Instruments, 1995, 66, 755-757.	1.3	14
98	New diagnostic features in the laser implosion of argonâ€filled targets. Review of Scientific Instruments, 1995, 66, 728-730.	1.3	3
99	Target imaging and backlighting diagnosis. Review of Scientific Instruments, 1995, 66, 731-733.	1.3	0
100	Diagnosis of laser-target implosions by space-resolved continuum absorption x-ray spectroscopy. Physical Review E, 1994, 49, 4381-4390.	2.1	21
101	New diagnostic features in the laser implosion of argon-filled targets. Optics Communications, 1994, 111, 556-565.	2.1	2
102	Short-wavelength-laser requirements for direct-drive ignition and gain. Laser and Particle Beams, 1993, 11, 299-306.	1.0	5
103	Electron-temperature measurement in laser-produced plasmas by the ratio of isoelectronic line intensities. Physical Review A, 1992, 46, R1747-R1750.	2.5	50
104	Production and characterization of hot, longâ€scaleâ€length laser plasmas. Physics of Fluids B, 1992, 4, 432-449.	1.7	21
105	Diagnosis of laser-compressed shells based on absorption of core radiation. Physical Review A, 1991, 44, 8429-8432.	2.5	15
106	Satellite absorption lines and the temperature dependence of x-ray absorption features in high-temperature plasmas. Physical Review A, 1991, 43, 961-967.	2.5	12
107	Effect of photoelectric fluorescence on the formation of x-ray absorption lines in laser-plasma experiments. Physical Review A, 1991, 44, 5111-5117.	2.5	4
108	X-ray lasing in thick foil irradiation geometry. Optics Communications, 1990, 79, 57-63.	2.1	12

#	Article	IF	CITATIONS
109	Demonstration of a narrow-divergence x-ray laser in neonlike titanium. Physical Review A, 1990, 42, 6962-6965.	2.5	102
110	Anticipated improvement in laser beam uniformity using distributed phase plates with quasirandom patterns. Journal of Applied Physics, 1990, 68, 924-931.	2.5	12
111	Radiation cooling in laser-produced plasmas due to high-Zlayers. Physical Review A, 1989, 40, 4564-4571.	2.5	3
112	Experimental and numerical study of thermal transport in 24â€beam ultraviolet irradiation of spherical targets. Journal of Applied Physics, 1989, 65, 969-977.	2.5	2
113	The design and optimization of recombination extremeâ€ultraviolet lasers. Physics of Fluids B, 1989, 1, 214-220.	1.7	16
114	X-ray laser studies at LLE. IEEE Transactions on Plasma Science, 1988, 16, 505-511.	1.3	3
115	Xâ€ray diagnosis of highâ€density compression of Arâ€filled polymer shell targets (abstract). Review of Scientific Instruments, 1988, 59, 1851-1851.	1.3	0
116	Thermal transport studies of 351â€nm laserâ€produced plasmas using extreme ultraviolet spectroscopy. Journal of Applied Physics, 1988, 63, 674-680.	2.5	4
117	Effect of laser illumination nonuniformity on the analysis of time-resolved x-ray measurements in uv spherical transport experiments. Physical Review A, 1987, 36, 3926-3934.	2.5	242
118	Effects of non-Maxwellian electron populations in non-LTE simulations of laser-plasma thermal transport and implosion experiments. Journal of Quantitative Spectroscopy and Radiative Transfer, 1986, 35, 131-143.	2.3	28
119	Multibeam, laser-imploded cylindrical plasmas. Physical Review A, 1986, 33, 1246-1253.	2.5	10
120	Statistical ray tracing in plasmas with random density fluctuations. Physical Review A, 1986, 33, 1892-1902.	2.5	7
121	Absorption-spectroscopy diagnosis of pusher conditions in laser-driven implosions. Physical Review A, 1986, 34, 411-420.	2.5	44
122	Post-post-Newtonian deflection of light by the Sun. Physical Review D, 1980, 22, 2947-2949.	4.7	137
123	The generation of gravitational radiation by escaping supernova neutrinos. Astrophysical Journal, 1978, 223, 1037.	4.5	99
124	Neutrino angular momentum loss in rotating stars. Astrophysical Journal, 1978, 219, L39.	4.5	12
125	The binary pulsar - Post-Newtonian timing effects. Astrophysical Journal, 1977, 216, 92.	4.5	88
126	Post-Newtonian generation of gravitational waves. Astrophysical Journal, 1975, 197, 717.	4.5	139