
Thomas Hofmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9123941/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nature's Chemical Signatures in Human Olfaction: A Foodborne Perspective for Future Biotechnology. Angewandte Chemie - International Edition, 2014, 53, 7124-7143.	13.8	409
2	The human TAS2R16 receptor mediates bitter taste in response to β-glucopyranosides. Nature Genetics, 2002, 32, 397-401.	21.4	400
3	Molecular Definition of Black Tea Taste by Means of Quantitative Studies, Taste Reconstitution, and Omission Experiments. Journal of Agricultural and Food Chemistry, 2005, 53, 5377-5384.	5.2	390
4	Identification of the Astringent Taste Compounds in Black Tea Infusions by Combining Instrumental Analysis and Human Bioresponse. Journal of Agricultural and Food Chemistry, 2004, 52, 3498-3508.	5.2	384
5	Mass-spectrometry-based draft of the Arabidopsis proteome. Nature, 2020, 579, 409-414.	27.8	328
6	Bitter Taste Receptors for Saccharin and Acesulfame K. Journal of Neuroscience, 2004, 24, 10260-10265.	3.6	315
7	Orosensory-Directed Identification of Astringent Mouthfeel and Bitter-Tasting Compounds in Red Wine. Journal of Agricultural and Food Chemistry, 2008, 56, 1376-1386.	5.2	271
8	Molecular and Sensory Characterization of γ-Glutamyl Peptides as Key Contributors to the Kokumi Taste of Edible Beans (<i>Phaseolus vulgaris</i> L.). Journal of Agricultural and Food Chemistry, 2007, 55, 6712-6719.	5.2	224
9	A Series of Kokumi Peptides Impart the Long-Lasting Mouthfulness of Matured Gouda Cheese. Journal of Agricultural and Food Chemistry, 2009, 57, 1440-1448.	5.2	218
10	Quantitative Reconstruction of the Nonvolatile Sensometabolome of a Red Wine. Journal of Agricultural and Food Chemistry, 2008, 56, 9190-9199.	5.2	216
11	Molecular and Sensory Studies on the Umami Taste of Japanese Green Tea. Journal of Agricultural and Food Chemistry, 2006, 54, 2688-2694.	5.2	211
12	G Protein-Coupled Receptors in Human Fat Taste Perception. Chemical Senses, 2012, 37, 123-139.	2.0	190
13	Evaluation of the Key Odorants in a Thermally Treated Solution of Ribose and Cysteine by Aroma Extract Dilution Techniques. Journal of Agricultural and Food Chemistry, 1995, 43, 2187-2194.	5.2	189
14	Coffee constituents as modulators of Nrf2 nuclear translocation and ARE (EpRE)-dependent gene expression. Journal of Nutritional Biochemistry, 2011, 22, 426-440.	4.2	189
15	Sensory-Directed Identification of Taste-Active Ellagitannins in American (Quercus albaL.) and European Oak Wood (Quercus roburL.) and Quantitative Analysis in Bourbon Whiskey and Oak-Matured Red Wines. Journal of Agricultural and Food Chemistry, 2006, 54, 3380-3390.	5.2	188
16	Structural and Functional Characterization of Pronyl-lysine, a Novel Protein Modification in Bread Crust Melanoidins Showing in Vitro Antioxidative and Phase I/II Enzyme Modulating Activity. Journal of Agricultural and Food Chemistry, 2002, 50, 6997-7006.	5.2	167
17	Structural and Sensory Characterization of Compounds Contributing to the Bitter Off-Taste of Carrots (<i>Daucus carota </i> L.) and Carrot Puree. Journal of Agricultural and Food Chemistry, 2003, 51, 3865-3873.	5.2	166
18	Human Psychometric and Taste Receptor Responses to Steviol Glycosides. Journal of Agricultural and Food Chemistry, 2012, 60, 6782-6793.	5.2	165

#	Article	IF	CITATIONS
19	Structures, Sensory Activity, and Dose/Response Functions of 2,5-Diketopiperazines in Roasted Cocoa Nibs (Theobroma cacao). Journal of Agricultural and Food Chemistry, 2005, 53, 7222-7231.	5.2	151
20	Quantitative Studies, Taste Reconstitution, and Omission Experiments on the Key Taste Compounds in Morel Mushrooms (Morchella deliciosaFr.). Journal of Agricultural and Food Chemistry, 2006, 54, 2705-2711.	5.2	146
21	Sweet and Umami Taste: Natural Products, Their Chemosensory Targets, and Beyond. Angewandte Chemie - International Edition, 2011, 50, 2220-2242.	13.8	146
22	Sensomics Mapping and Identification of the Key Bitter Metabolites in Gouda Cheese. Journal of Agricultural and Food Chemistry, 2008, 56, 2795-2804.	5.2	145
23	Bacterial medium-chain 3-hydroxy fatty acid metabolites trigger immunity in <i>Arabidopsis</i> plants. Science, 2019, 364, 178-181.	12.6	145
24	Combinatorial interaction network of abscisic acid receptors and coreceptors from <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10280-10285.	7.1	142
25	Activity-Guided Identification of a Chemopreventive Compound in Coffee Beverage Using in Vitro and in Vivo Techniques. Journal of Agricultural and Food Chemistry, 2003, 51, 6861-6869.	5.2	130
26	Accurate Determination of Reference Materials and Natural Isolates by Means of Quantitative ¹ H NMR Spectroscopy. Journal of Agricultural and Food Chemistry, 2014, 62, 2506-2515.	5.2	129
27	Sensory-Guided Decomposition of Roasted Cocoa Nibs (Theobroma cacao) and Structure Determination of Taste-Active Polyphenols. Journal of Agricultural and Food Chemistry, 2005, 53, 5407-5418.	5.2	125
28	Identification of the Taste Enhancer Alapyridaine in Beef Broth and Evaluation of Its Sensory Impact by Taste Reconstitution Experiments. Journal of Agricultural and Food Chemistry, 2003, 51, 6791-6796.	5.2	123
29	Bioresponse-guided decomposition of roast coffee beverage and identification of key bitter taste compounds. European Food Research and Technology, 2006, 222, 492-508.	3.3	123
30	Attractive but Toxic: Emerging Roles of Glycosidically Bound Volatiles and Glycosyltransferases Involved in Their Formation. Molecular Plant, 2018, 11, 1225-1236.	8.3	119
31	Molecular Definition of the Taste of Roasted Cocoa Nibs (Theobroma cacao) by Means of Quantitative Studies and Sensory Experiments. Journal of Agricultural and Food Chemistry, 2006, 54, 5530-5539.	5.2	117
32	Structure Determination and Sensory Analysis of Bitter-Tasting 4-Vinylcatechol Oligomers and Their Identification in Roasted Coffee by Means of LC-MS/MS. Journal of Agricultural and Food Chemistry, 2007, 55, 1945-1954.	5.2	117
33	Chemical Interactions between Odor-Active Thiols and Melanoidins Involved in the Aroma Staling of Coffee Beverages. Journal of Agricultural and Food Chemistry, 2002, 50, 319-326.	5.2	112
34	Quantitative Studies and Sensory Analyses on the Influence of Cultivar, Spatial Tissue Distribution, and Industrial Processing on the Bitter Off-Taste of Carrots (Daucus carotaL.) and Carrot Products. Journal of Agricultural and Food Chemistry, 2004, 52, 4508-4514.	5.2	109
35	Model Studies on the Influence of Coffee Melanoidins on Flavor Volatiles of Coffee Beverages. Journal of Agricultural and Food Chemistry, 2001, 49, 2382-2386.	5.2	107
36	2-Oxopropanal, Hydroxy-2-propanone, and 1-PyrrolineImportant Intermediates in the Generation of the Roast-Smelling Food Flavor Compounds 2-Acetyl-1-pyrroline and 2-Acetyltetrahydropyridine. Journal of Agricultural and Food Chemistry, 1998, 46, 2270-2277.	5.2	105

#	Article	IF	CITATIONS
37	Reconstitution of the Flavor Signature of Dornfelder Red Wine on the Basis of the Natural Concentrations of Its Key Aroma and Taste Compounds. Journal of Agricultural and Food Chemistry, 2011, 59, 8866-8874.	5.2	105
38	Astringency Is a Trigeminal Sensation That Involves the Activation of G Protein-Coupled Signaling by Phenolic Compounds. Chemical Senses, 2014, 39, 471-487.	2.0	105
39	Isolation, Structure Determination, Synthesis, and Sensory Activity ofN-Phenylpropenoyl-l-amino Acids from Cocoa (Theobroma cacao). Journal of Agricultural and Food Chemistry, 2005, 53, 5419-5428.	5.2	99
40	Quantitative Investigation of Trigonelline, Nicotinic Acid, and Nicotinamide in Foods, Urine, and Plasma by Means of LC-MS/MS and Stable Isotope Dilution Analysis. Journal of Agricultural and Food Chemistry, 2008, 56, 11114-11121.	5.2	96
41	Quantitative Studies and Taste Re-engineering Experiments toward the Decoding of the Nonvolatile Sensometabolome of Gouda Cheese. Journal of Agricultural and Food Chemistry, 2008, 56, 5299-5307.	5.2	96
42	Discovery of Salt Taste Enhancing Arginyl Dipeptides in Protein Digests and Fermented Fish Sauces by Means of a Sensomics Approach. Journal of Agricultural and Food Chemistry, 2011, 59, 12578-12588.	5.2	95
43	Analysis of microplastics in drinking water and other clean water samples with micro-Raman and micro-infrared spectroscopy: minimum requirements and best practice guidelines. Analytical and Bioanalytical Chemistry, 2021, 413, 5969-5994.	3.7	94
44	Kokumi-Active Glutamyl Peptides in Cheeses and Their Biogeneration by Penicillium roquefortii. Journal of Agricultural and Food Chemistry, 2009, 57, 3738-3748.	5.2	93
45	Radical-Assisted Melanoidin Formation during Thermal Processing of Foods as well as under Physiological Conditions. Journal of Agricultural and Food Chemistry, 1999, 47, 391-396.	5.2	92
46	Synthesis and Sensory Characterization of Novel Umami-Tasting Glutamate Glycoconjugates. Journal of Agricultural and Food Chemistry, 2003, 51, 5428-5436.	5.2	90
47	Amino Acid Export in Developing Arabidopsis Seeds Depends on UmamiT Facilitators. Current Biology, 2015, 25, 3126-3131.	3.9	90
48	Three TAS2R Bitter Taste Receptors Mediate the Psychophysical Responses to Bitter Compounds of Hops (Humulus lupulus L.) and Beer. Chemosensory Perception, 2009, 2, 118-132.	1.2	89
49	Sensory-Directed Identification of β-Alanyl Dipeptides as Contributors to the Thick-Sour and White-Meaty Orosensation Induced by Chicken Broth. Journal of Agricultural and Food Chemistry, 2009, 57, 9867-9877.	5.2	87
50	Bioactive C ₁₇ -Polyacetylenes in Carrots (<i>Daucus carota</i> L.): Current Knowledge and Future Perspectives. Journal of Agricultural and Food Chemistry, 2015, 63, 9211-9222.	5.2	87
51	Bioappearance and pharmacokinetics of bioactives upon coffee consumption. Analytical and Bioanalytical Chemistry, 2013, 405, 8487-8503.	3.7	86
52	LC-MS/MS Quantitation of Hop-Derived Bitter Compounds in Beer Using the ECHO Technique. Journal of Agricultural and Food Chemistry, 2009, 57, 1172-1182.	5.2	83
53	Amino Acids and Peptides Activate at Least Five Members of the Human Bitter Taste Receptor Family. Journal of Agricultural and Food Chemistry, 2013, 61, 53-60.	5.2	83
54	Quantitation of Key Tastants and Re-engineering the Taste of Parmesan Cheese. Journal of Agricultural and Food Chemistry, 2016, 64, 1794-1805.	5.2	83

#	Article	IF	CITATIONS
55	Urinary <i>N</i> â€methylpyridinium and trigonelline as candidate dietary biomarkers of coffee consumption. Molecular Nutrition and Food Research, 2011, 55, 1613-1623.	3.3	81
56	Secret of the major birch pollen allergen Bet v 1: identification of the physiological ligand. Biochemical Journal, 2014, 457, 379-390.	3.7	80
57	Significant amino acids in aroma compound profiling during yeast fermentation analyzed by PLS regression. LWT - Food Science and Technology, 2013, 51, 423-432.	5.2	79
58	Integrated microbiota and metabolite profiles link Crohn's disease to sulfur metabolism. Nature Communications, 2020, 11, 4322.	12.8	79
59	All- <i>trans</i> -Configuration in <i>Zanthoxylum</i> Alkylamides Swaps the Tingling with a Numbing Sensation and Diminishes Salivation. Journal of Agricultural and Food Chemistry, 2014, 62, 2479-2488.	5.2	77
60	Oat bran extract (Avena sativa L.) from food by-product streams as new natural emulsifier. Food Hydrocolloids, 2018, 81, 253-262.	10.7	77
61	Is there a direct relationship between oral astringency and human salivary protein binding?. European Food Research and Technology, 2008, 227, 1693-1698.	3.3	74
62	Structures of Storageâ€Induced Transformation Products of the Beer's Bitter Principles, Revealed by Sophisticated NMR Spectroscopic and LC–MS Techniques. Chemistry - A European Journal, 2009, 15, 13047-13058.	3.3	72
63	Discovery and Structure Determination of a Novel Maillard-Derived Sweetness Enhancer by Application of the Comparative Taste Dilution Analysis (cTDA). Journal of Agricultural and Food Chemistry, 2003, 51, 1035-1041.	5.2	71
64	Quantitative Studies on the Influence of the Bean Roasting Parameters and Hot Water Percolation on the Concentrations of Bitter Compounds in Coffee Brew. Journal of Agricultural and Food Chemistry, 2010, 58, 3720-3728.	5.2	70
65	Activity-Guided Identification of (S)-Malic Acid 1-O-d-Glucopyranoside (Morelid) and γ-Aminobutyric Acid as Contributors to Umami Taste and Mouth-Drying Oral Sensation of Morel Mushrooms (Morchella deliciosaFr.). Journal of Agricultural and Food Chemistry, 2005, 53, 4149-4156.	5.2	68
66	Structure determination and sensory evaluation of novel bitter compounds formed from β-acids of hop (Humulus lupulus L.) upon wort boiling. Food Chemistry, 2009, 116, 71-81.	8.2	68
67	Coffees rich in chlorogenic acid or <i>N</i> â€methylpyridinium induce chemopreventive phase Ilâ€enzymes via the Nrf2/ARE pathway in vitro and in vivo. Molecular Nutrition and Food Research, 2011, 55, 798-802.	3.3	66
68	Sensory-Guided Identification of <i>N</i> -(1-Methyl-4-oxoimidazolidin-2-ylidene)-α-amino Acids as Contributors to the Thick-Sour and Mouth-Drying Orosensation of Stewed Beef Juice. Journal of Agricultural and Food Chemistry, 2010, 58, 6341-6350.	5.2	65
69	(+)-(S)-AlapyridaineA General Taste Enhancer?. Chemical Senses, 2003, 28, 371-379.	2.0	64
70	Comprehensive Sensomics Analysis of Hop-Derived Bitter Compounds during Storage of Beer. Journal of Agricultural and Food Chemistry, 2011, 59, 1939-1953.	5.2	64
71	On the Autoxidation of Bitter-Tasting Iso-α-acids in Beer. Journal of Agricultural and Food Chemistry, 2010, 58, 5059-5067.	5.2	63
72	Identification of Bitter Off-Taste Compounds in the Stored Cold Pressed Linseed Oil. Journal of Agricultural and Food Chemistry, 2007, 55, 7864-7868.	5.2	62

#	Article	IF	CITATIONS
73	Bitter-Tasting and Kokumi-Enhancing Molecules in Thermally Processed Avocado (Persea americana) Tj ETQq1	1 0.784314 5.2	rg&T /Overloo
74	Arabidopsis ENHANCED DISEASE SUSCEPTIBILITY1 promotes systemic acquired resistance via azelaic acid and its precursor 9-oxo nonanoic acid. Journal of Experimental Botany, 2014, 65, 5919-5931.	4.8	60
75	Development of a Stable Isotope Dilution Analysis for the Quantification of the <i>Bacillus cereus</i> Toxin Cereulide in Foods. Journal of Agricultural and Food Chemistry, 2010, 58, 1420-1428.	5.2	59
76	Sensory-Guided Decomposition of Red Currant Juice (Ribes rubrum) and Structure Determination of Key Astringent Compounds. Journal of Agricultural and Food Chemistry, 2007, 55, 1394-1404.	5.2	57
77	Premature and ectopic anthocyanin formation by silencing of anthocyanidin reductase in strawberry (<i>Fragaria</i> Â×Â <i>ananassa</i>). New Phytologist, 2014, 201, 440-451.	7.3	57
78	Development of a Hydrophilic Liquid Interaction Chromatographyâ^'High-Performance Liquid Chromatographyâ^'Tandem Mass Spectrometry Based Stable Isotope Dilution Analysis and Pharmacokinetic Studies on Bioactive Pyridines in Human Plasma and Urine after Coffee Consumption. Analytical Chemistry, 2010, 82, 1486-1497.	6.5	56
79	Sensomics Analysis of Taste Compounds in Balsamic Vinegar and Discovery of 5-Acetoxymethyl-2-furaldehyde as a Novel Sweet Taste Modulator. Journal of Agricultural and Food Chemistry, 2012, 60, 9974-9990.	5.2	56
80	The role of lipolysis in human orosensory fat perception. Journal of Lipid Research, 2014, 55, 870-882.	4.2	56
81	Flavor Contribution and Formation of the Intense Roast-Smelling Odorants 2-Propionyl-1-pyrroline and 2-Propionyltetrahydropyridine in Maillard-Type Reactions. Journal of Agricultural and Food Chemistry, 1998, 46, 2721-2726.	5.2	55
82	Characterization of Natural "Cooling―Compounds Formed from Glucose andl-Proline in Dark Malt by Application of Taste Dilution Analysis. Journal of Agricultural and Food Chemistry, 2001, 49, 1336-1344.	5.2	55
83	A Role of the Epithelial Sodium Channel in Human Salt Taste Transduction?. Chemosensory Perception, 2008, 1, 78-90.	1.2	54
84	Quantitative Sensomics Profiling of Hop-Derived Bitter Compounds Throughout a Full-Scale Beer Manufacturing Process. Journal of Agricultural and Food Chemistry, 2010, 58, 7930-7939.	5.2	54
85	Structural and Sensory Characterization of Key Pungent and Tingling Compounds from Black Pepper (<i>Piper nigrum</i> L.). Journal of Agricultural and Food Chemistry, 2012, 60, 2884-2895.	5.2	54
86	Saponins from European Licorice Roots (<i>Glycyrrhiza glabra</i>). Journal of Natural Products, 2018, 81, 1734-1744.	3.0	54
87	Sensory-Directed Identification of Creaminess-Enhancing Volatiles and Semivolatiles in Full-Fat Cream. Journal of Agricultural and Food Chemistry, 2007, 55, 9634-9645.	5.2	53
88	Identification and RP-HPLC-ESI-MS/MS Quantitation of Bitter-Tasting Î ² -Acid Transformation Products in Beer. Journal of Agricultural and Food Chemistry, 2009, 57, 7480-7489.	5.2	53
89	Discovery of <i>N</i> ² -(1-Carboxyethyl)guanosine 5′-Monophosphate as an Umami-Enhancing Maillard-Modified Nucleotide in Yeast Extracts. Journal of Agricultural and Food Chemistry, 2010, 58, 10614-10622.	5.2	53
90	Chemodiversity of cereulide, the emetic toxin of Bacillus cereus. Analytical and Bioanalytical Chemistry, 2015, 407, 2439-2453.	3.7	53

#	Article	IF	CITATIONS
91	Simple Generation of Suspensible Secondary Microplastic Reference Particles via Ultrasound Treatment. Frontiers in Chemistry, 2020, 8, 169.	3.6	53
92	Sensomics Analysis of Key Bitter Compounds in the Hard Resin of Hops (<i>Humulus lupulus</i> L.) and Their Contribution to the Bitter Profile of Pilsner-Type Beer. Journal of Agricultural and Food Chemistry, 2015, 63, 3402-3418.	5.2	52
93	Structural and Sensory Characterization of Bitter Tasting Steroidal Saponins from Asparagus Spears (<i>Asparagus officinalis</i> L.). Journal of Agricultural and Food Chemistry, 2012, 60, 11889-11900.	5.2	51
94	Effect of Coffee Combining Green Coffee Bean Constituents with Typical Roasting Products on the Nrf2/ARE Pathway in Vitro and in Vivo. Journal of Agricultural and Food Chemistry, 2012, 60, 9631-9641.	5.2	51
95	Higher expression of the strawberry xyloglucan endotransglucosylase/hydrolase genes <i>Fv<scp>XTH</scp>9</i> and <i>Fv<scp>XTH</scp>6</i> accelerates fruit ripening. Plant Journal, 2019, 100, 1237-1253.	5.7	51
96	Compositional and Sensory Characterization of Red Wine Polymers. Journal of Agricultural and Food Chemistry, 2013, 61, 2045-2061.	5.2	50
97	Development of a Stable Isotope Dilution Analysis with Liquid Chromatographyâ^'Tandem Mass Spectrometry Detection for the Quantitative Analysis of Di- and Trihydroxybenzenes in Foods and Model Systems. Journal of Agricultural and Food Chemistry, 2006, 54, 5755-5762.	5.2	49
98	Application of a Molecular Sensory Science Approach to Alkalized Cocoa (<i>Theobroma cacao</i>): Structure Determination and Sensory Activity of Nonenzymatically C-Glycosylated Flavan-3-ols. Journal of Agricultural and Food Chemistry, 2006, 54, 9510-9521.	5.2	49
99	Dark roast coffee is more effective than light roast coffee in reducing body weight, and in restoring red blood cell vitamin E and glutathione concentrations in healthy volunteers. Molecular Nutrition and Food Research, 2011, 55, 1582-1586.	3.3	49
100	Sensomics-Assisted Elucidation of the Tastant Code of Cooked Crustaceans and Taste Reconstruction Experiments. Journal of Agricultural and Food Chemistry, 2016, 64, 1164-1175.	5.2	48
101	Structure Determination of 3- <i>O</i> -Caffeoyl- <i>epi</i> -γ-quinide, an Orphan Bitter Lactone in Roasted Coffee. Journal of Agricultural and Food Chemistry, 2008, 56, 9581-9585.	5.2	47
102	Sugar Beet Extract (<i>Beta vulgaris</i> L) as a New Natural Emulsifier: Emulsion Formation. Journal of Agricultural and Food Chemistry, 2017, 65, 4153-4160.	5.2	47
103	Kaempferol 3- <i>O</i> -(2‴- <i>O</i> -Sinapoyl-β-sophoroside) Causes the Undesired Bitter Taste of Canola/Rapeseed Protein Isolates. Journal of Agricultural and Food Chemistry, 2019, 67, 372-378.	5.2	47
104	Quantitative Analysis ofN-Phenylpropenoyl-l-amino Acids in Roasted Coffee and Cocoa Powder by Means of a Stable Isotope Dilution Assay. Journal of Agricultural and Food Chemistry, 2006, 54, 2859-2867.	5.2	46
105	Structure Determination of Bisacetylenic Oxylipins in Carrots (<i>Daucus carota</i> L.) and Enantioselective Synthesis of Falcarindiol. Journal of Agricultural and Food Chemistry, 2009, 57, 11030-11040.	5.2	46
106	Mass spectrometric profiling of Bacillus cereus strains and quantitation of the emetic toxin cereulide by means of stable isotope dilution analysis and HEp-2 bioassay. Analytical and Bioanalytical Chemistry, 2013, 405, 191-201.	3.7	46
107	Kinetics of Sodium Release from Wheat Bread Crumb As Affected by Sodium Distribution. Journal of Agricultural and Food Chemistry, 2013, 61, 10659-10669.	5.2	46
108	The Bitter Chemodiversity of Hops (<i>Humulus lupulus</i> L.). Journal of Agricultural and Food Chemistry, 2016, 64, 7789-7799.	5.2	46

#	Article	IF	CITATIONS
109	Evaluation of the taste contribution of theaflavins in black tea infusions using the taste activity concept. European Food Research and Technology, 2004, 218, 442-447.	3.3	44
110	Quantitative Precursor Studies on Di- and Trihydroxybenzene Formation during Coffee Roasting Using "In Bean―Model Experiments and Stable Isotope Dilution Analysis. Journal of Agricultural and Food Chemistry, 2006, 54, 10086-10091.	5.2	44
111	ORA1, a Zebrafish Olfactory Receptor Ancestral to All Mammalian V1R Genes, Recognizes 4-Hydroxyphenylacetic Acid, a Putative Reproductive Pheromone. Journal of Biological Chemistry, 2014, 289, 19778-19788.	3.4	44
112	Early metabolic and transcriptional variations in fruit of natural white-fruited Fragaria vesca genotypes. Scientific Reports, 2017, 7, 45113.	3.3	44
113	From the Well to the Bottle: Identifying Sources of Microplastics in Mineral Water. Water (Switzerland), 2021, 13, 841.	2.7	44
114	Formation of Kokumi-Enhancing γ-Glutamyl Dipeptides in Parmesan Cheese by Means of γ-Glutamyltransferase Activity and Stable Isotope Double-Labeling Studies. Journal of Agricultural and Food Chemistry, 2016, 64, 1784-1793.	5.2	43
115	Label-free quantitative proteome analysis of the surface-bound salivary pellicle. Colloids and Surfaces B: Biointerfaces, 2017, 152, 68-76.	5.0	43
116	Identification of Sensory-Active Phytochemicals in Asparagus (<i>Asparagus officinalis</i> L.). Journal of Agricultural and Food Chemistry, 2012, 60, 11877-11888.	5.2	42
117	Glucosylation of Smoke-Derived Volatiles in Grapevine (<i>Vitis vinifera</i>) is Catalyzed by a Promiscuous Resveratrol/Guaiacol Glucosyltransferase. Journal of Agricultural and Food Chemistry, 2017, 65, 5681-5689.	5.2	42
118	Influence of Texture on the Perception of Saltiness in Wheat Bread. Journal of Agricultural and Food Chemistry, 2013, 61, 10649-10658.	5.2	41
119	Four-week coffee consumption affects energy intake, satiety regulation, body fat, and protects DNA integrity. Food Research International, 2014, 63, 420-427.	6.2	41
120	Folic acid induces salicylic acidâ€dependent immunity in <scp>A</scp> rabidopsis and enhances susceptibility to <i><scp>A</scp>lternaria brassicicola</i> . Molecular Plant Pathology, 2015, 16, 616-622.	4.2	41
121	Spatial and Temporal Localization of Flavonoid Metabolites in Strawberry Fruit (<i>Fragaria</i> ×) Tj ETQq1 1 C).784314 5.2	rgBT /Overloc 41
122	Identification of Antioxidative Flavonols and Anthocyanins in <i>Sicana odorifera</i> Fruit Peel. Journal of Agricultural and Food Chemistry, 2011, 59, 975-983.	5.2	40
123	Quantitation and bitter taste contribution of saponins in fresh and cooked white asparagus (Asparagus officinalis L.). Food Chemistry, 2014, 145, 427-436.	8.2	40
124	Reinvestigation of the Bitter Compounds in Carrots (<i>Daucus carota</i> L.) by Using a Molecular Sensory Science Approach. Journal of Agricultural and Food Chemistry, 2008, 56, 10252-10260.	5.2	39
125	Metabolic engineering in strawberry fruit uncovers a dormant biosynthetic pathway. Metabolic Engineering, 2011, 13, 527-531.	7.0	39
126	Antioxidative Compounds from <i>Garcinia buchananii</i> Stem Bark. Journal of Natural Products, 2015, 78, 234-240.	3.0	38

#	Article	IF	CITATIONS
127	High-Throughput Quantitation of Proline Betaine in Foods and Suitability as a Valid Biomarker for Citrus Consumption. Journal of Agricultural and Food Chemistry, 2017, 65, 1613-1619.	5.2	38
128	Mitigating Off-Flavors of Plant-Based Proteins. Journal of Agricultural and Food Chemistry, 2021, 69, 9202-9207.	5.2	38
129	New and Convenient Syntheses of the Important Roasty, Popcorn-like Smelling Food Aroma Compounds 2-Acetyl-1-pyrroline and 2-Acetyltetrahydropyridine from Their Corresponding Cyclic α-Amino Acids. Journal of Agricultural and Food Chemistry, 1998, 46, 616-619.	5.2	37
130	Identification of (furan-2-yl)methylated benzene diols and triols as a novel class of bitter compounds in roasted coffee. Food Chemistry, 2011, 126, 441-449.	8.2	37
131	Analytical and Sensory Studies on the Release of Sodium from Wheat Bread Crumb. Journal of Agricultural and Food Chemistry, 2013, 61, 6485-6494.	5.2	37
132	Expression of a functional jasmonic acid carboxyl methyltransferase is negatively correlated with strawberry fruit development. Journal of Plant Physiology, 2014, 171, 1315-1324.	3.5	37
133	Ces locus embedded proteins control the non-ribosomal synthesis of the cereulide toxin in emetic Bacillus cereus on multiple levels. Frontiers in Microbiology, 2015, 6, 1101.	3.5	37
134	Cationic astringents alter the tribological and rheological properties of human saliva and salivary mucin solutions. Biotribology, 2016, 6, 12-20.	1.9	37
135	Quantitative Studies on the Formation of Phenol/2-Furfurylthiol Conjugates in Coffee Beverages toward the Understanding of the Molecular Mechanisms of Coffee Aroma Staling. Journal of Agricultural and Food Chemistry, 2007, 55, 4095-4102.	5.2	36
136	Quantitation of Resveratrol in Red Wines by Means of Stable Isotope Dilution Analysisâ^'Ultra-Performance Liquid Chromatographyâ^'Quan-Time-of-Flight Mass Spectrometry and Cross Validation. Analytical Chemistry, 2011, 83, 3398-3405.	6.5	36
137	Key Phytochemicals Contributing to the Bitter Off-Taste of Oat (<i>Avena sativa</i> L.). Journal of Agricultural and Food Chemistry, 2016, 64, 9639-9652.	5.2	36
138	Dual effectiveness of Alternaria but not Fusarium mycotoxins against human topoisomerase II and bacterial gyrase. Archives of Toxicology, 2017, 91, 2007-2016.	4.2	36
139	Key Odorants in Japanese Roasted Barley Tea (Mugi-Cha)—Differences between Roasted Barley Tea Prepared from Naked Barley and Roasted Barley Tea Prepared from Hulled Barley. Journal of Agricultural and Food Chemistry, 2020, 68, 2728-2737.	5.2	36
140	Systematic Studies on Structure and Physiological Activity of Cyclic α-Keto Enamines, a Novel Class of "Cooling―Compounds. Journal of Agricultural and Food Chemistry, 2001, 49, 5383-5390.	5.2	35
141	Quantitative Studies on Roast Kinetics for Bioactives in Coffee. Journal of Agricultural and Food Chemistry, 2013, 61, 12123-12128.	5.2	35
142	The Chemistry of Roasting—Decoding Flavor Formation. , 2017, , 273-309.		35
143	First Insights Into Within Host Translocation of the Bacillus cereus Toxin Cereulide Using a Porcine Model. Frontiers in Microbiology, 2018, 9, 2652.	3.5	35
144	Unified Flavor Quantitation: Toward High-Throughput Analysis of Key Food Odorants and Tastants by Means of Ultra-High-Performance Liquid Chromatography Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2019, 67, 8599-8608.	5.2	35

#	Article	IF	CITATIONS
145	Molecularization of Bitter Off-Taste Compounds in Pea-Protein Isolates (<i>Pisum sativum</i> L.). Journal of Agricultural and Food Chemistry, 2020, 68, 10374-10387.	5.2	35
146	Application of Hydrophilic Interaction Liquid Chromatography/Comparative Taste Dilution Analysis for Identification of a Bitter Inhibitor by a Combinatorial Approach Based on Maillard Reaction Chemistry. Journal of Agricultural and Food Chemistry, 2005, 53, 9165-9171.	5.2	34
147	¹⁸ O Stable Isotope Labeling, Quantitative Model Experiments, and Molecular Dynamics Simulation Studies on the Trans-Specific Degradation of the Bitter Tasting Iso-α-acids of Beer. Journal of Agricultural and Food Chemistry, 2009, 57, 11014-11023.	5.2	34
148	Carbonic Anhydraseâ€IV Mediates the Fizz of Carbonated Beverages. Angewandte Chemie - International Edition, 2010, 49, 2975-2977.	13.8	34
149	Measurement of the Intracellular pH in Human Stomach Cells: A Novel Approach To Evaluate the Gastric Acid Secretory Potential of Coffee Beverages. Journal of Agricultural and Food Chemistry, 2010, 58, 1976-1985.	5.2	34
150	Racemic and Enantiopure Synthesis and Physicochemical Characterization of the Novel Taste Enhancer <i>N</i> -(1-Carboxyethyl)-6-(hydroxymethyl)pyridinium-3-ol Inner Salt. Journal of Agricultural and Food Chemistry, 2003, 51, 4040-4045.	5.2	33
151	Activation of the Nrf2-ARE pathway by the Alternaria alternata mycotoxins altertoxin I and II. Archives of Toxicology, 2017, 91, 203-216.	4.2	33
152	Orosensory Stimulation Effects on Human Saliva Proteome. Journal of Agricultural and Food Chemistry, 2011, 59, 10219-10231.	5.2	31
153	New Taste-Active 3-(<i>O</i> -β- <scp>d</scp> -Glucosyl)-2-oxoindole-3-acetic Acids and Diarylheptanoids in <i>Cimiciato</i> -Infected Hazelnuts. Journal of Agricultural and Food Chemistry, 2018, 66, 4660-4673.	5.2	31
154	Detection of the formyl radical by EPR spin-trapping and mass spectrometry. Free Radical Biology and Medicine, 2018, 116, 129-133.	2.9	31
155	Sensoproteomics: A New Approach for the Identification of Taste-Active Peptides in Fermented Foods. Journal of Agricultural and Food Chemistry, 2018, 66, 11092-11104.	5.2	31
156	Depsipeptide Intermediates Interrogate Proposed Biosynthesis of Cereulide, the Emetic Toxin of Bacillus cereus. Scientific Reports, 2015, 5, 10637.	3.3	30
157	Genetic dissection of the (poly)phenol profile of diploid strawberry (Fragaria vesca) fruits using a NIL collection. Plant Science, 2016, 242, 151-168.	3.6	30
158	Activity-Guided Identification of <i>in Vitro</i> Antioxidants in Beer. Journal of Agricultural and Food Chemistry, 2018, 66, 720-731.	5.2	30
159	Targeted metabolomics of pellicle and saliva in children with different caries activity. Scientific Reports, 2020, 10, 697.	3.3	30
160	Quantitation of Sweet Steviol Glycosides by Means of a HILIC-MS/MS-SIDA Approach. Journal of Agricultural and Food Chemistry, 2013, 61, 11312-11320.	5.2	29
161	Cardiometabolic effects of two coffee blends differing in content for major constituents in overweight adults: a randomized controlled trial. European Journal of Nutrition, 2015, 54, 845-854.	3.9	29
162	Food-Grade Synthesis of Maillard-Type Taste Enhancers Using Natural Deep Eutectic Solvents (NADES). Molecules, 2018, 23, 261.	3.8	29

#	Article	IF	CITATIONS
163	Screening of Raw Coffee for Thiol Binding Site Precursors Using "In Bean―Model Roasting Experiments. Journal of Agricultural and Food Chemistry, 2005, 53, 2623-2629.	5.2	28
164	Multiparametric Quantitation of the <i>Bacillus cereus</i> Toxins Cereulide and Isocereulides A–G in Foods. Journal of Agricultural and Food Chemistry, 2015, 63, 8307-8313.	5.2	28
165	Glucosylation of the phytoalexin <i>N</i> â€feruloyl tyramine modulates the levels of pathogenâ€responsive metabolites in <i>Nicotiana benthamiana</i> . Plant Journal, 2019, 100, 20-37.	5.7	28
166	In Vitro Activity-Guided Identification of Antioxidants in Aged Garlic Extract. Journal of Agricultural and Food Chemistry, 2013, 61, 3059-3067.	5.2	27
167	UPLC-ESI-TOF MS-Based Metabolite Profiling of the Antioxidative Food Supplement <i>Garcinia buchananii</i> . Journal of Agricultural and Food Chemistry, 2015, 63, 7169-7179.	5.2	27
168	Metabolite Quantitative Trait Loci for Flavonoids Provide New Insights into the Genetic Architecture of Strawberry (<i>Fragaria × ananassa</i>) Fruit Quality. Journal of Agricultural and Food Chemistry, 2020, 68, 6927-6939.	5.2	27
169	Characterization of precursors and elucidation of the reaction pathway leading to a novel coloured 2H,7H,8aH-pyrano[2,3-b]pyran-3-one from pentoses by quantitative studies and application of 13C-labelling experiments. Carbohydrate Research, 1998, 313, 215-224.	2.3	26
170	Development of stable isotope dilution assays for ochratoxin A in blood samples. Analytical Biochemistry, 2011, 419, 88-94.	2.4	26
171	Comprehensive Analysis of the <i>Alternaria</i> Mycobolome Using Mass Spectrometry Based Metabolomics. Molecular Nutrition and Food Research, 2020, 64, e1900558.	3.3	26
172	Reinvestigation of the Chemical Structure of Bitter-Tasting Quinizolate and Homoquinizolate and Studies on Their Maillard-Type Formation Pathways Using Suitable13C-Labeling Experiments. Journal of Agricultural and Food Chemistry, 2002, 50, 6027-6036.	5.2	25
173	N-Methylpyridinium, a degradation product of trigonelline upon coffee roasting, stimulates respiratory activity and promotes glucose utilization in HepG2 cells. Food and Function, 2014, 5, 454.	4.6	25
174	Mozambioside Is an Arabica-Specific Bitter-Tasting Furokaurane Glucoside in Coffee Beans. Journal of Agricultural and Food Chemistry, 2015, 63, 10492-10499.	5.2	25
175	Salt taste perception in hydrocolloid systems is affected by sodium ion release and mechanosensory–gustatory cross-modal interactions. Food Hydrocolloids, 2015, 51, 486-494.	10.7	25
176	The Cyclic Diarylheptanoid Asadanin as the Main Contributor to the Bitter Off-Taste in Hazelnuts (<i>Corylus avellana</i> L.). Journal of Agricultural and Food Chemistry, 2017, 65, 1677-1683.	5.2	25
177	Salivary Proteome Patterns Affecting Human Salt Taste Sensitivity. Journal of Agricultural and Food Chemistry, 2017, 65, 9275-9286.	5.2	25
178	Oral astringent stimuli alter the enamel pellicle's ultrastructure as revealed by electron microscopy. Journal of Dentistry, 2017, 63, 21-29.	4.1	25
179	Sensomics-Based Molecularization of the Taste of Pot-au-Feu, a Traditional Meat/Vegetable Broth. Journal of Agricultural and Food Chemistry, 2018, 66, 194-202.	5.2	25
180	Characterization of Bitter-Tasting Oxylipins in Poppy Seeds (<i>Papaver somniferum</i> L.). Journal of Agricultural and Food Chemistry, 2020, 68, 10361-10373.	5.2	25

#	Article	IF	CITATIONS
181	Investigation of Kokumi Substances and Bacteria in Thai Fermented Freshwater Fish (Pla-ra). Journal of Agricultural and Food Chemistry, 2020, 68, 10345-10351.	5.2	25
182	Characterization of the UDP-glycosyltransferase UGT72 Family in Poplar and Identification of Genes Involved in the Glycosylation of Monolignols. International Journal of Molecular Sciences, 2020, 21, 5018.	4.1	25
183	Bacterial rhamnolipids and their 3-hydroxyalkanoate precursors activate <i>Arabidopsis</i> innate immunity through two independent mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	25
184	Brevilactibacter flavus gen. nov., sp. nov., a novel bacterium of the family Propionibacteriaceae isolated from raw milk and dairy products and reclassification of Propioniciclava sinopodophylli as Brevilactibacter sinopodophylli comb. nov International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 2186-2193.	1.7	25
185	Systematic Studies on the Chemical Structure and Umami Enhancing Activity of Maillard-Modified Guanosine 5′-Monophosphates. Journal of Agricultural and Food Chemistry, 2011, 59, 665-676.	5.2	24
186	Differential Off-line LC-NMR (DOLC-NMR) Metabolomics To Monitor Tyrosine-Induced Metabolome Alterations in <i>Saccharomyces cerevisiae</i> . Journal of Agricultural and Food Chemistry, 2017, 65, 3230-3241.	5.2	24
187	Current Status and Future Perspectives in Flavor Research: Highlights of the 11th Wartburg Symposium on Flavor Chemistry & Biology. Journal of Agricultural and Food Chemistry, 2018, 66, 2197-2203.	5.2	24
188	Taste Modulating Peptides from Overfermented Cocoa Beans. Journal of Agricultural and Food Chemistry, 2019, 67, 4311-4320.	5.2	24
189	Development of a Highly Sensitive Ultra-High-Performance Liquid Chromatography Coupled to Electrospray Ionization Tandem Mass Spectrometry Quantitation Method for Fecal Bile Acids and Application on Crohn's Disease Studies. Journal of Agricultural and Food Chemistry, 2021, 69, 5238-5251.	5.2	24
190	The pungent substances piperine, capsaicin, 6-gingerol and polygodial inhibit the human two-pore domain potassium channels TASK-1, TASK-3 and TRESK. Frontiers in Pharmacology, 2013, 4, 141.	3.5	23
191	Gymnemic Acids Inhibit Sodium-Dependent Glucose Transporter 1. Journal of Agricultural and Food Chemistry, 2014, 62, 5925-5931.	5.2	23
192	Effect of Astringent Stimuli on Salivary Protein Interactions Elucidated by Complementary Proteomics Approaches. Journal of Agricultural and Food Chemistry, 2017, 65, 2147-2154.	5.2	23
193	Emulsifying Properties of Natural Extracts from Panax ginseng L Food Biophysics, 2017, 12, 479-490.	3.0	23
194	Decoding the Nonvolatile Sensometabolome of Orange Juice (<i>Citrus sinensis</i>). Journal of Agricultural and Food Chemistry, 2018, 66, 2354-2369.	5.2	23
195	Characterization of Key Aroma Compounds in Pellets of Different Hop Varieties (<i>Humulus) Tj ETQq1 1 0.78431 67, 12044-12053.</i>	4 rgBT /O 5.2	verlock 10 23
196	Synthesis and Structure Determination of Covalent Conjugates Formed from the Sulfuryâ ''Roasty-Smelling 2-Furfurylthiol and Di- or Trihydroxybenzenes and Their Identification in Coffee Brew. Journal of Agricultural and Food Chemistry, 2006, 54, 10076-10085.	5.2	22
197	Quantitation of ^β <i>N</i> -Alkanoyl-5-hydroxytryptamides in Coffee by Means of LC-MS/MS-SIDA and Assessment of Their Gastric Acid Secretion Potential Using the HGT-1 Cell Assay. Journal of Agricultural and Food Chemistry, 2010, 58, 1593-1602.	5.2	22
198	Application of 2D-HPLC/Taste Dilution Analysis on Taste Compounds in Aniseed (<i>Pimpinella) Tj ETQq0 0 0 rgBT</i>	/Overlock	10 Tf 50 62

#	Article	IF	CITATIONS
199	The Endospore-Forming Pathogen Bacillus cereus Exploits a Small Colony Variant-Based Diversification Strategy in Response to Aminoglycoside Exposure. MBio, 2015, 6, e01172-15.	4.1	22
200	Acylphloroglucinol biosynthesis in strawberry fruit. Plant Physiology, 2015, 169, pp.00794.2015.	4.8	22
201	Label-free quantitative 1H NMR spectroscopy to study low-affinity ligand–protein interactions in solution: A contribution to the mechanism of polyphenol-mediated astringency. PLoS ONE, 2017, 12, e0184487.	2.5	22
202	Dynamic Proteome Alteration and Functional Modulation of Human Saliva Induced by Dietary Chemosensory Stimuli. Journal of Agricultural and Food Chemistry, 2018, 66, 5621-5634.	5.2	22
203	Investigations into the Structure-Function Relationship of the Naturally-Derived Surfactant Glycyrrhizin: Emulsion Stability. Food Biophysics, 2020, 15, 288-296.	3.0	22
204	Identification and Quantitation of Reaction Products from Quinic Acid, Quinic Acid Lactone, and Chlorogenic Acid with Strecker Aldehydes in Roasted Coffee. Journal of Agricultural and Food Chemistry, 2021, 69, 1027-1038.	5.2	22
205	Sensoproteomic Discovery of Taste-Modulating Peptides and Taste Re-engineering of Soy Sauce. Journal of Agricultural and Food Chemistry, 2022, 70, 6503-6518.	5.2	22
206	Nonenzymatic <i>C</i> -Glycosylation of Flavan-3-ols by Oligo- and Polysaccharides. Journal of Agricultural and Food Chemistry, 2007, 55, 9685-9697.	5.2	21
207	Identification of the Key Astringent Compounds in Spinach (Spinacia oleracea) by Means of the Taste Dilution Analysis. Chemosensory Perception, 2008, 1, 268-281.	1.2	21
208	Isolation and Structure Elucidation of Highly Antioxidative 3,8″-Linked Biflavanones and Flavanone- <i>C</i> -glycosides from <i>Garcinia buchananii</i> Bark. Journal of Agricultural and Food Chemistry, 2012, 60, 2053-2062.	5.2	21
209	Activation and modulation of recombinantly expressed serotonin receptor type 3A by terpenes and pungent substances. Biochemical and Biophysical Research Communications, 2015, 467, 1090-1096.	2.1	21
210	Taste-Active Maillard Reaction Products in Roasted Garlic (<i>Allium sativum</i>). Journal of Agricultural and Food Chemistry, 2016, 64, 5845-5854.	5.2	21
211	Phytochemical Characterization of Low Molecular Weight Constituents from Marshmallow Roots (<i>Althaea officinalis</i>) and Inhibiting Effects of the Aqueous Extract on Human Hyaluronidase-1. Journal of Natural Products, 2017, 80, 290-297.	3.0	21
212	Production of the potential sweetener 5-ketofructose from fructose in fed-batch cultivation with Gluconobacter oxydans. Bioresource Technology, 2018, 259, 164-172.	9.6	21
213	Structural and Functional Analysis of UGT92G6 Suggests an Evolutionary Link Between Mono- and Disaccharide Glycoside-Forming Transferases. Plant and Cell Physiology, 2018, 59, 862-875.	3.1	21
214	Degradation of brown adipocyte purine nucleotides regulates uncoupling protein 1 activity. Molecular Metabolism, 2018, 8, 77-85.	6.5	21
215	Discovery of taste modulating octadecadien-12-ynoic acids in golden chanterelles (Cantharellus) Tj ETQq1 1 0.78	4314 rgB1 8.2	[Overlock] 21
216	Numerous Compounds Orchestrate Coffee's Bitterness. Journal of Agricultural and Food Chemistry,	5.2	21

2020, 68, 6692-6700.

#	Article	IF	CITATIONS
217	2-O-β-d-Glucopyranosyl-carboxyatractyligenin from Coffea L. inhibits adenine nucleotide translocase in isolated mitochondria but is quantitatively degraded during coffee roasting. Phytochemistry, 2013, 93, 124-135.	2.9	20
218	Stability of Emulsions Using a New Natural Emulsifier: Sugar Beet Extract (Beta vulgaris L.). Food Biophysics, 2017, 12, 269-278.	3.0	20
219	Structure–Pungency Relationships and TRP Channel Activation of Drimane Sesquiterpenes in Tasmanian Pepper (<i>Tasmannia lanceolata</i>). Journal of Agricultural and Food Chemistry, 2017, 65, 5700-5712.	5.2	20
220	Constitutive Polyphenols in Blades and Veins of Grapevine (Vitis vinifera L.) Healthy Leaves. Journal of Agricultural and Food Chemistry, 2018, 66, 10977-10990.	5.2	20
221	Impact of oral astringent stimuli on surface charge and morphology of the protein-rich pellicle at the tooth–saliva interphase. Colloids and Surfaces B: Biointerfaces, 2019, 174, 451-458.	5.0	20
222	Investigations into the structure-function relationship of plant-based surfactant glycyrrhizin: Interfacial behavior & emulsion formation. LWT - Food Science and Technology, 2020, 120, 108910.	5.2	20
223	Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) Are Associated With Diet, BMI, and Age. Frontiers in Nutrition, 2021, 8, 691401.	3.7	20
224	Coffee consumption rapidly reduces background DNA strand breaks in healthy humans: Results of a shortâ€ŧerm repeated uptake intervention study. Molecular Nutrition and Food Research, 2016, 60, 682-686.	3.3	19
225	The Odorant (<i>R</i>)-Citronellal Attenuates Caffeine Bitterness by Inhibiting the Bitter Receptors TAS2R43 and TAS2R46. Journal of Agricultural and Food Chemistry, 2018, 66, 2301-2311.	5.2	19
226	Salt Taste Enhancing <scp>l</scp> -Arginyl Dipeptides from Casein and Lysozyme Released by Peptidases of Basidiomycota. Journal of Agricultural and Food Chemistry, 2018, 66, 2344-2353.	5.2	19
227	Quantification and Bitter Taste Contribution of Lipids and Their Oxidation Products in Pea-Protein Isolates (<i>Pisum sativum</i> L.). Journal of Agricultural and Food Chemistry, 2021, 69, 8768-8776.	5.2	19
228	Human Taste and Umami Receptor Responses to Chemosensorica Generated by Maillard-type <i>N</i> ² -Alkyl- and <i>N</i> ² -Arylthiomethylation of Guanosine 5′-Monophosphates. Journal of Agricultural and Food Chemistry, 2014, 62, 11429-11440.	5.2	18
229	A Hydroalcoholic Extract from Paullinia pinnata L. Roots Exerts Anthelmintic Activity against Free-Living and Parasitic Nematodes. Planta Medica, 2016, 82, 1173-1179.	1.3	18
230	Systematic studies of structure and physiological activity of alapyridaine. A novel food-born taste enhancer. Molecular Nutrition and Food Research, 2004, 48, 270-281.	3.3	17
231	Taste Modulating <i>N</i> -(1-Methyl-4-oxoimidazolidin-2-ylidene) α-Amino Acids Formed from Creatinine and Reducing Carbohydrates. Journal of Agricultural and Food Chemistry, 2011, 59, 8366-8374.	5.2	17
232	New Highly in Vitro Antioxidative 3,8″-Linked Biflav(an)ones and Flavanone- <i>C</i> -glycosides from <i>Garcinia buchananii</i> Stem Bark. Journal of Agricultural and Food Chemistry, 2013, 61, 12572-12581.	5.2	17
233	Synephrine as a Specific Marker for Orange Consumption. Journal of Agricultural and Food Chemistry, 2017, 65, 4853-4858.	5.2	17
234	Answering biological questions by analysis of the strawberry metabolome. Metabolomics, 2018, 14, 145.	3.0	17

#	Article	IF	CITATIONS
235	A feasibility study on the pilot scale manufacture of fresh cheese from skim milk retentates without acid whey production: Effect of calcium content on bitterness and texture. International Dairy Journal, 2019, 93, 72-80.	3.0	17
236	Dry-Hopping to Modify the Aroma of Alcohol-Free Beer on a Molecular Level—Loss and Transfer of Odor-Active Compounds. Journal of Agricultural and Food Chemistry, 2020, 68, 8602-8612.	5.2	17
237	Structure-dependent effects of pyridine derivatives on mechanisms of intestinal fatty acid uptake: regulation of nicotinic acid receptor and fatty acid transporter expression. Journal of Nutritional Biochemistry, 2014, 25, 750-757.	4.2	16
238	Non-water miscible ionic liquid improves biocatalytic production of geranyl glucoside with Escherichia coli overexpressing a glucosyltransferase. Bioprocess and Biosystems Engineering, 2016, 39, 1409-1414.	3.4	16
239	Quantitative proteomics and SWATH-MS to elucidate peri-receptor mechanisms in human salt taste sensitivity. Food Chemistry, 2018, 254, 95-102.	8.2	16
240	Discovery of a Thiamine-Derived Taste Enhancer in Process Flavors. Journal of Agricultural and Food Chemistry, 2019, 67, 5857-5865.	5.2	16
241	<i>In Silico</i> Investigation of Bitter Hop-Derived Compounds and Their Cognate Bitter Taste Receptors. Journal of Agricultural and Food Chemistry, 2020, 68, 10414-10423.	5.2	16
242	Application of Site Specific13C Enrichment and13C NMR Spectroscopy for the Elucidation of the Formation Pathway Leading to a Red 1H-Pyrrol-3(2H)-one during the Maillard Reaction of Furan-2-carboxaldehyde andl-Alanine. Journal of Agricultural and Food Chemistry, 1998, 46, 941-945.	5.2	15
243	Novel biotechnological glucosylation of high-impact aroma chemicals, 3(2H)- and 2(5H)-furanones. Scientific Reports, 2019, 9, 10943.	3.3	15
244	Quantitation and Taste Contribution of Sensory Active Molecules in Oat (<i>Avena sativa</i> L.). Journal of Agricultural and Food Chemistry, 2020, 68, 10097-10108.	5.2	15
245	Comprehensive structure-activity-relationship studies of sensory active compounds in licorice (Glycyrrhiza glabra). Food Chemistry, 2021, 364, 130420.	8.2	15
246	Optimisation of trans-cinnamic acid and hydrocinnamyl alcohol production with recombinant Saccharomyces cerevisiae and identification of cinnamyl methyl ketone as a by-product. FEMS Yeast Research, 2017, 17, .	2.3	14
247	Formation and Characterization of Polyphenol-Derived Red Chromophores. Enhancing the Color of Processed Cocoa Powders: Part 1. Journal of Agricultural and Food Chemistry, 2019, 67, 4632-4642.	5.2	14
248	Six Uridine-Diphosphate Glycosyltransferases Catalyze the Glycosylation of Bioactive C13-Apocarotenols. Plant Physiology, 2020, 184, 1744-1761.	4.8	14
249	Characterization of Bitter and Astringent Off-Taste Compounds in Potato Fibers. Journal of Agricultural and Food Chemistry, 2020, 68, 11524-11534.	5.2	14
250	Stereoselective Synthesis of Amides Sharing the Guanosine 5′-Monophosphate Scaffold and Umami Enhancement Studies Using Human Sensory and hT1R1/rT1R3 Receptor Assays. Journal of Agricultural and Food Chemistry, 2011, 59, 8875-8885.	5.2	13
251	Xanthohumol C, a minor bioactive hop compound: Production, purification strategies and antimicrobial test. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1095, 39-49.	2.3	13
252	Antioxidative Maillard Reaction Products Generated in Processed Aged Garlic Extract. Journal of Agricultural and Food Chemistry, 2019, 67, 2190-2200.	5.2	13

#	Article	IF	CITATIONS
253	Mapping Taste-Relevant Food Peptidomes by Means of Sequential Window Acquisition of All Theoretical Fragment Ion–Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2020, 68, 10287-10298.	5.2	13
254	Confronting Racism in Chemistry Journals. ACS Applied Materials & Interfaces, 2020, 12, 28925-28927.	8.0	13
255	Sensomics-Assisted Aroma Decoding of Pea Protein Isolates (Pisum sativum L.). Foods, 2022, 11, 412.	4.3	13
256	The identification of microplastics based on vibrational spectroscopy data – A critical review of data analysis routines. TrAC - Trends in Analytical Chemistry, 2022, 148, 116535.	11.4	13
257	A 4-week consumption of medium roast and dark roast coffees affects parameters of energy status in healthy subjects. Food Research International, 2014, 63, 409-419.	6.2	12
258	Chemosensate-Induced Modulation of the Salivary Proteome and Metabolome Alters the Sensory Perception of Salt Taste and Odor-Active Thiols. Journal of Agricultural and Food Chemistry, 2018, 66, 7740-7749.	5.2	12
259	Construction and Application of a Database for a Five-Dimensional Identification of Natural Compounds in <i>Garcinia</i> Species by Means of UPLC-ESI-TWIMS-TOF-MS: Introducing Gas Phase Polyphenol Conformer Drift Time Distribution Intensity Ratios. Journal of Agricultural and Food Chemistry, 2019, 67, 975-985.	5.2	12
260	Studies on the Impact of Malting and Mashing on the Free, Soluble Ester-Bound, and Insoluble Ester-Bound Forms of Desired and Undesired Phenolic Acids Aiming at Styrene Mitigation during Wheat Beer Brewing. Journal of Agricultural and Food Chemistry, 2020, 68, 12421-12432.	5.2	12
261	Sensomics-Assisted Flavor Decoding of Dairy Model Systems and Flavor Reconstitution Experiments. Journal of Agricultural and Food Chemistry, 2021, 69, 6588-6600.	5.2	12
262	Offering Fiber-Enriched Foods Increases Fiber Intake in Adults With or Without Cardiometabolic Risk: A Randomized Controlled Trial. Frontiers in Nutrition, 2022, 9, 816299.	3.7	12
263	Activation Spectra of Human Bitter Taste Receptors Stimulated with Cyclolinopeptides Corresponding to Fresh and Aged Linseed Oil. Journal of Agricultural and Food Chemistry, 2022, 70, 4382-4390.	5.2	12
264	NMR-Based Studies on Odorant–Melanoidin Interactions in Coffee Beverages. Journal of Agricultural and Food Chemistry, 2021, 69, 15334-15344.	5.2	12
265	(2 <i>R</i> ,3 <i>S</i> ,2'' <i>R</i> ,3'' <i>R</i>)-manniflav new gastrointestinal smooth muscle L-type calcium channel inhibitor, which underlies the spasmolytic properties of <i>Garcinia buchananii</i> stem bark extract. Journal of Smooth Muscle Research, 2014, 50, 48-65.	anone, a 1.2	11
266	Value addition of red beet (<i>Beta vulgaris</i> L.) byâ€products: Emulsion formation and stability. International Journal of Food Science and Technology, 2019, 54, 619-625.	2.7	11
267	Novel Taste-Enhancing 4-Amino-2-methyl-5-heteroalkypyrimidines Formed from Thiamine by Maillard-Type Reactions. Journal of Agricultural and Food Chemistry, 2019, 67, 13986-13997.	5.2	11
268	Formation and Characterization of Polyphenol-Derived Red Chromophores. Enhancing the Color of Processed Cocoa Powders: Part 2. Journal of Agricultural and Food Chemistry, 2019, 67, 4643-4651.	5.2	11
269	Functional Metabolome Analysis of <i>Penicillium roqueforti</i> by Means of Differential Off-Line LC–NMR. Journal of Agricultural and Food Chemistry, 2019, 67, 5135-5146.	5.2	11
270	Rapid, High-Throughput Quantitation of Odor-Active 2-Acetyl Azaheterocycles in Food Products by UHPLC–MS/MS. Journal of Agricultural and Food Chemistry, 2021, 69, 1405-1412.	5.2	11

#	Article	IF	CITATIONS
271	Steroidal Saponins─New Sources to Develop Potato (<i>Solanum tuberosum</i> L.) Genotypes Resistant against Certain <i>Phytophthora infestans</i> Strains. Journal of Agricultural and Food Chemistry, 2022, 70, 7447-7459.	5.2	11
272	Raw coffee based dietary supplements contain carboxyatractyligenin derivatives inhibiting mitochondrial adenine-nucleotide-translocase. Food and Chemical Toxicology, 2014, 70, 198-204.	3.6	10
273	<i>JAFC</i> . Your Window to a Broad Science Community. Journal of Agricultural and Food Chemistry, 2019, 67, 1-4.	5.2	10
274	Effects of bioâ€based coatings on the ripening and quality attributes of tomato (<i>Solanum) Tj ETQq0 0 0 rgB</i>	/Overlock	10 Tf 50 622
275	Enzymatic Synthesis of Modified Alternaria Mycotoxins Using a Whole-Cell Biotransformation System. Toxins, 2020, 12, 264.	3.4	10
276	Flavor Contribution and Formation of Heterocyclic Oxygen-Containing Key Aroma Compounds in Thermally Processed Foods. ACS Symposium Series, 2002, , 207-226.	0.5	9
277	Comparative direct infusion ion mobility mass spectrometry profiling of Thermus thermophilus wild-type and mutant â^†cruC carotenoid extracts. Analytical and Bioanalytical Chemistry, 2013, 405, 9843-9848.	3.7	9
278	Influence of Different Hop Products on the cis/trans Ratio of Iso-α-Acids in Beer and Changes in Key Aroma and Bitter Taste Molecules during Beer Ageing. Journal of the American Society of Brewing Chemists, 2014, 72, 116-125.	1.1	9
279	Guidelines for Research on Bioactive Constituents – A <i>Journal of Agricultural and Food Chemistry</i> Perspective. Journal of Agricultural and Food Chemistry, 2015, 63, 8103-8105.	5.2	9
280	RNAiâ€mediated endogene silencing in strawberry fruit: detection of primary and secondary siRNAs by deep sequencing. Plant Biotechnology Journal, 2017, 15, 658-668.	8.3	9
281	The Effect of Pungent and Tingling Compounds from Piper nigrum L. on Background K+ Currents. Frontiers in Pharmacology, 2017, 8, 408.	3.5	9
282	Hop-induced formation of ethyl esters in dry-hopped beer. Food Production Processing and Nutrition, 2020, 2, .	3.5	9
283	Ion-Mobility-Based Liquid Chromatography–Mass Spectrometry Quantitation of Taste-Enhancing Octadecadien-12-ynoic Acids in Mushrooms. Journal of Agricultural and Food Chemistry, 2020, 68, 5741-5751.	5.2	9
284	High-Throughput Quantitation of Key Cocoa Tastants by Means of Ultra-High-Performance Liquid Chromatography Tandem Mass Spectrometry and Application to a Global Sample Set. Journal of Agricultural and Food Chemistry, 2021, 69, 8200-8212.	5.2	9
285	Biosynthesis of α-solanine and α-chaconine in potato leaves (Solanum tuberosum L.) – A 13CO2 study. Food Chemistry, 2021, 365, 130461.	8.2	9
286	Identification of Salicylates in Willow Bark (Salix Cortex) for Targeting Peripheral Inflammation. International Journal of Molecular Sciences, 2021, 22, 11138.	4.1	9
287	Identification and Quantitation of Reaction Products from Chlorogenic Acid, Caffeic Acid, and Their Thermal Degradation Products with Odor-Active Thiols in Coffee Beverages. Journal of Agricultural and Food Chemistry, 2022, 70, 5427-5437.	5.2	9
288	JAFC—Most Trusted Partner in a Global Transition of Agriculture–Food–Nutrition Research!. Journal of Agricultural and Food Chemistry, 2017, 65, 1-3.	5.2	8

#	Article	IF	CITATIONS
289	Targeted screening and quantitative analyses of antioxidant compounds in aged-garlic extract. European Food Research and Technology, 2018, 244, 1803-1814.	3.3	8
290	Activity and distribution pattern of enzymes in the in-situ pellicle of children. Archives of Oral Biology, 2019, 104, 24-32.	1.8	8
291	Daily consumption of a dark-roast coffee for eight weeks improved plasma oxidized LDL and alpha-tocopherol status: A randomized, controlled human intervention study. Journal of Functional Foods, 2019, 56, 40-48.	3.4	8
292	Quantitative Determination of Thiamine-Derived Taste Enhancers in Aqueous Model Systems, Natural Deep Eutectic Solvents, and Thermally Processed Foods. Journal of Agricultural and Food Chemistry, 2020, 68, 6181-6189.	5.2	8
293	Contrasting dynamics in abscisic acid metabolism in different <i>Fragaria</i> spp. during fruit ripening and identification of the enzymes involved. Journal of Experimental Botany, 2021, 72, 1245-1259.	4.8	8
294	Influence of the Abiotic Stress Conditions, Waterlogging and Drought, on the Bitter Sensometabolome as Well as Agronomical Traits of Six Genotypes of Daucus carota. Foods, 2021, 10, 1607.	4.3	8
295	Systematic Evaluation of Liquid Chromatography (LC) Column Combinations for Application in Two-Dimensional LC Metabolomic Studies. Analytical Chemistry, 2021, 93, 12565-12573.	6.5	8
296	On the non-enzymatic liberation of limonin and C17-epilimonin from limonin-17-β-d-glucopyranoside in orange juice. European Food Research and Technology, 2008, 228, 55-63.	3.3	7
297	Two new benzoyl glucuronosyl glycerols from the leaves of Garcinia buchananii Baker. Phytochemistry Letters, 2017, 19, 187-190.	1.2	7
298	Integrating Nature, People, and Technology To Tackle the Global Agri-Food Challenge. Journal of Agricultural and Food Chemistry, 2017, 65, 4007-4008.	5.2	7
299	Engineering of benzoxazinoid biosynthesis in Arabidopsis thaliana: Metabolic and physiological challenges. Phytochemistry, 2021, 192, 112947.	2.9	7
300	Impact of exogenous α-amylases on sugar formation in straight dough wheat bread. European Food Research and Technology, 2021, 247, 695-706.	3.3	7
301	Quantitative Proton NMR Spectroscopy for Basic Taste Recombinant Reconstitution Using the Taste Recombinant Database. Journal of Agricultural and Food Chemistry, 2021, 69, 14713-14721.	5.2	7
302	High Resolution Quantitative Trait Locus Mapping and Whole Genome Sequencing Enable the Design of an Anthocyanidin Reductase-Specific Homoeo-Allelic Marker for Fruit Colour Improvement in Octoploid Strawberry (Fragaria × ananassa). Frontiers in Plant Science, 2022, 13, 869655.	3.6	7
303	Identification and Quantitation of Taste-Active Compounds in Dried Scallops by Combined Application of the Sensomics and a Quantitative NMR Approach. Journal of Agricultural and Food Chemistry, 2022, 70, 247-259.	5.2	7
304	Identification of Urinary and Salivary Biomarkers for Coffee Consumption. ACS Symposium Series, 2012, , 13-25.	0.5	6
305	Modulation of inflammatory gene transcription after long-term coffee consumption. Food Research International, 2014, 63, 428-438.	6.2	6
306	The Role of Endogenous Enzymes during Malting of Barley and Wheat Varieties in the Mitigation of Styrene in Wheat Beer. Journal of Agricultural and Food Chemistry, 2020, 68, 13888-13896.	5.2	6

#	Article	IF	CITATIONS
307	Targeted LC-MS/MS Profiling of Bile Acids in Various Animal Tissues. Journal of Agricultural and Food Chemistry, 2021, 69, 10572-10580.	5.2	6
308	Dietary Linalool is Transferred into the Milk of Nursing Mothers. Molecular Nutrition and Food Research, 2021, 65, e2100507.	3.3	6
309	Key odorant melanoidin interactions in aroma staling of coffee beverages. Food Chemistry, 2022, 392, 133291.	8.2	6
310	Discovery and Identification of Tastants and Taste-Modulating <i>N</i> -Acyl Amino Acid Derivatives in Traditional Korean Fermented Dish Kimchi Using a Sensomics Approach. Journal of Agricultural and Food Chemistry, 2022, 70, 7500-7514.	5.2	6
311	Biomimetic In Vitro Assay for the Characterization of Bitter Tastants and Identification of Bitter Taste Blockers. ACS Symposium Series, 2003, , 91-101.	0.5	5
312	Structures, orosensory activity, and T1R1/T1R3 receptor activation of amides generated by lactone aminolysis using food-related processing conditions. European Food Research and Technology, 2013, 237, 57-70.	3.3	5
313	Development and Application of a Stable Isotope Dilution Analysis for the Quantitation of Advanced Glycation End Products of Creatinine in Biofluids of Type 2 Diabetic Patients and Healthy Volunteers. Analytical Chemistry, 2013, 85, 2961-2969.	6.5	5
314	A new NMR approach for structure determination of thermally unstable biflavanones and application to phytochemicals from <i>Garcinia buchananii</i> . Magnetic Resonance in Chemistry, 2015, 53, 813-820.	1.9	5
315	(2 <i>R</i> ,3 <i>S</i> ,2″ <i>R</i> ,3″ <i>R</i>)-Manniflavanone Protects Proliferating Skeletal Muscle Cells against Oxidative Stress and Stimulates Myotube Formation. Journal of Agricultural and Food Chemistry, 2017, 65, 3636-3646.	5.2	5
316	Guidelines for unequivocal structural identification of compounds with biological activity of significance in food chemistry (IUPAC Technical Report). Pure and Applied Chemistry, 2019, 91, 1417-1437.	1.9	5
317	Tyrosine Induced Metabolome Alterations of <i>Penicillium roqueforti</i> and Quantitation of Secondary Key Metabolites in Blue-Mold Cheese. Journal of Agricultural and Food Chemistry, 2019, 67, 8500-8509.	5.2	5
318	Bioavailability and Biological Effects of 2- <i>O</i> -{i>-4- <scp>d</scp> -Glucopyranosyl-carboxyatractyligenin from Green Coffee in <i>Caenorhabditis elegans</i> . Journal of Agricultural and Food Chemistry, 2019, 67, 4774-4781.	5.2	5
319	Molecularization of Foam-Active Saponins from Sugar Beet Side Streams (<i>Beta vulgaris</i> ssp.) Tj ETQq1 1 10962-10974.	0.784314 5.2	rgBT /Overloc 5
320	Fast and Sensitive LC–MS/MS Method for the Quantitation of Saponins in Various Sugar Beet Materials. Journal of Agricultural and Food Chemistry, 2020, 68, 15027-15035.	5.2	5
321	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Materials & Interfaces, 2020, 12, 20147-20148.	8.0	5
322	The wheat species profiling by non-targeted UPLC–ESI–TOF-MS analysis. European Food Research and Technology, 2020, 246, 1617-1626.	3.3	5
323	Confronting Racism in Chemistry Journals. Nano Letters, 2020, 20, 4715-4717.	9.1	5
324	Effects of Extrinsic Wheat Fiber Supplementation on Fecal Weight; A Randomized Controlled Trial. Nutrients, 2020, 12, 298.	4.1	5

#	Article	IF	CITATIONS
325	Distribution of the Emetic Toxin Cereulide in Cow Milk. Toxins, 2021, 13, 528.	3.4	5
326	Confronting Racism in Chemistry Journals. Organic Letters, 2020, 22, 4919-4921.	4.6	4
327	Structure Revision of Isocereulide A, an Isoform of the Food Poisoning Emetic Bacillus cereus Toxin Cereulide. Molecules, 2021, 26, 1360.	3.8	4
328	Impact of exogenous maltogenic α-amylase and maltotetraogenic amylase on sugar release in wheat bread. European Food Research and Technology, 2021, 247, 1425-1436.	3.3	4
329	A high throughput toolbox for comprehensive flavor compound mapping in mint. Food Chemistry, 2021, 365, 130522.	8.2	4
330	Dietary Piperine is Transferred into the Milk of Nursing Mothers. Molecular Nutrition and Food Research, 2021, 65, e2100508.	3.3	4
331	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Chemical Society, 2020, 142, 8059-8060.	13.7	3
332	Quantitation of Toxic Steroidal Glycoalkaloids and Newly Identified Saponins in Post-Harvest Light-Stressed Potato (<i>Solanum tuberosum</i> L.) Varieties. Journal of Agricultural and Food Chemistry, 2022, 70, 8300-8308.	5.2	3
333	Influence of High Hydrostatic Pressure on Aroma Compound Formation in Thermally Processed Proline—Glucose Mixtures. ACS Symposium Series, 2005, , 136-145.	0.5	2
334	We Are All <i>JAFC</i> . Thanks for Your Engagement!. Journal of Agricultural and Food Chemistry, 2020, 68, 1-3.	5.2	2
335	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Nano, 2020, 14, 5151-5152.	14.6	2
336	A new phytoecdysteroid from the stem bark of Vitex cienkowskii. European Food Research and Technology, 2020, 246, 2485-2491.	3.3	2
337	Confronting Racism in Chemistry Journals. ACS Nano, 2020, 14, 7675-7677.	14.6	2
338	Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797.	47.7	2
339	Down-regulation of Fra a 1.02 in strawberry fruits causes transcriptomic and metabolic changes compatible with an altered defense response. Horticulture Research, 2021, 8, 58.	6.3	2
340	Sensory-Guided Multidimensional Exploration of Antisweet Principles from <i>Gymnema sylvestre</i> (Retz) Schult. Journal of Agricultural and Food Chemistry, 2021, 69, 5510-5527.	5.2	2
341	Investigations into the Ability to Reduce Cinnamic Acid as Undesired Precursor of Toxicologically Relevant Styrene in Wort by Different Barley to Wheat Ratios (Grain Bill) during Mashing. Journal of Agricultural and Food Chemistry, 2021, 69, 9443-9450.	5.2	2
342	Impact of Phytochemicals on Viability and Cereulide Toxin Synthesis in Bacillus cereus Revealed by a Novel High-Throughput Method, Coupling an AlamarBlue-Based Assay with UPLC-MS/MS. Toxins, 2021, 13, 672.	3.4	2

#	Article	IF	CITATIONS
343	Development of a fast and sensitive UPLC-MS/MS method for quantitation of dilignols in aged garlic extract. European Food Research and Technology, 2016, 242, 849-854.	3.3	1
344	JAFC. After 65 Years of Excellence—Prepared for the Future!. Journal of Agricultural and Food Chemistry, 2018, 66, 1-4.	5.2	1
345	Studies on the odorant concentrations and their time dependencies during dryâ€hopping of alcoholâ€free beer. Flavour and Fragrance Journal, 2020, 35, 703-712.	2.6	1
346	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Energy Letters, 2020, 5, 1610-1611.	17.4	1
347	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science and Technology Letters, 2020, 7, 280-281.	8.7	1
348	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Education, 2020, 97, 1217-1218.	2.3	1
349	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry Letters, 2020, 11, 5279-5281.	4.6	1
350	Confronting Racism in Chemistry Journals. ACS Central Science, 2020, 6, 1012-1014.	11.3	1
351	Confronting Racism in Chemistry Journals. Journal of the American Society for Mass Spectrometry, 2020, 31, 1321-1323.	2.8	1
352	Confronting Racism in Chemistry Journals. Crystal Growth and Design, 2020, 20, 4201-4203.	3.0	1
353	Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.	11.2	1
354	Confronting Racism in Chemistry Journals. Journal of the American Chemical Society, 2020, 142, 11319-11321.	13.7	1
355	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry B, 2020, 124, 5335-5337.	2.6	1
356	Update to Our Reader, Reviewer, and Author Communities—April 2020. Crystal Growth and Design, 2020, 20, 2817-2818.	3.0	1
357	Sensory-Directed Identification of Creaminess-Enhancing Semi-Volatile Lactones in Crumb Chocolate. Foods, 2021, 10, 1483.	4.3	1
358	Confronting Racism in Chemistry Journals. ACS Biomaterials Science and Engineering, 2020, 6, 3690-3692.	5.2	1
359	Confronting Racism in Chemistry Journals. ACS Omega, 2020, 5, 14857-14859.	3.5	1
360	The malting parameters: steeping, germination, withering, and kilning temperature and aeration rate as possibilities for styrene mitigation in wheat beer. European Food Research and Technology, 2022, 248, 69-84.	3.3	1

#	Article	IF	CITATIONS
361	Confronting Racism in Chemistry Journals. Molecular Pharmaceutics, 2020, 17, 2229-2231.	4.6	1
362	Confronting Racism in Chemistry Journals. ACS Chemical Neuroscience, 2020, 11, 1852-1854.	3.5	1
363	Quantitative Mapping of Flavor and Pharmacologically Active Compounds in European Licorice Roots (<i>Glycyrrhiza glabra</i> L.) in Response to Growth Conditions and Arbuscular Mycorrhiza Symbiosis. Journal of Agricultural and Food Chemistry, 2021, 69, 13173-13189.	5.2	1
364	Bacillus cereus Toxin Repertoire: Diversity of (Iso)cereulide(s). Molecules, 2022, 27, 872.	3.8	1
365	Critical Reviews Should Illuminate a Path toward Impactful and Fruitful Lines of Research. Journal of Agricultural and Food Chemistry, 2022, 70, 2425-2426.	5.2	1
366	High-Throughput Flavor Analysis and Mapping of Flavor Alterations Induced by Different Genotypes of <i>Mentha</i> by Means of UHPLC-MS/MS. Journal of Agricultural and Food Chemistry, 2022, 70, 5668-5679.	5.2	1
367	Know What You Don't Know: Assessment of Overlooked Microplastic Particles in FTIR Images. Microplastics, 2022, 1, 359-376.	4.2	1
368	Congratulations to the Best of 2016!. Journal of Agricultural and Food Chemistry, 2017, 65, 3431-3431.	5.2	0
369	Confronting Racism in Chemistry Journals. ACS Pharmacology and Translational Science, 2020, 3, 559-561.	4.9	0
370	Confronting Racism in Chemistry Journals. Biochemistry, 2020, 59, 2313-2315.	2.5	0
371	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Biomaterials Science and Engineering, 2020, 6, 2707-2708.	5.2	0
372	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Central Science, 2020, 6, 589-590.	11.3	0
373	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Biology, 2020, 15, 1282-1283.	3.4	0
374	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Neuroscience, 2020, 11, 1196-1197.	3.5	0
375	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Earth and Space Chemistry, 2020, 4, 672-673.	2.7	0
376	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Macro Letters, 2020, 9, 666-667.	4.8	0
377	Update to Our Reader, Reviewer, and Author Communities—April 2020. , 2020, 2, 563-564.		0
378	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Photonics, 2020, 7, 1080-1081.	6.6	0

#	Article	IF	CITATIONS
379	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Pharmacology and Translational Science, 2020, 3, 455-456.	4.9	0
380	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sustainable Chemistry and Engineering, 2020, 8, 6574-6575.	6.7	0
381	Update to Our Reader, Reviewer, and Author Communities—April 2020. Analytical Chemistry, 2020, 92, 6187-6188.	6.5	0
382	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemistry of Materials, 2020, 32, 3678-3679.	6.7	0
383	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Proteome Research, 2020, 19, 1883-1884.	3.7	0
384	Confronting Racism in Chemistry Journals. Langmuir, 2020, 36, 7155-7157.	3.5	0
385	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Polymer Materials, 2020, 2, 1739-1740.	4.4	0
386	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Combinatorial Science, 2020, 22, 223-224.	3.8	0
387	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Medicinal Chemistry Letters, 2020, 11, 1060-1061.	2.8	0
388	Editorial Confronting Racism in Chemistry Journals. , 2020, 2, 829-831.		0
389	Confronting Racism in Chemistry Journals. ACS Applied Energy Materials, 2020, 3, 6016-6018.	5.1	0
390	Confronting Racism in Chemistry Journals. Industrial & Engineering Chemistry Research, 2020, 59, 11915-11917.	3.7	0
391	Confronting Racism in Chemistry Journals. Journal of Natural Products, 2020, 83, 2057-2059.	3.0	0
392	Confronting Racism in Chemistry Journals. ACS Medicinal Chemistry Letters, 2020, 11, 1354-1356.	2.8	0
393	Confronting Racism in Chemistry Journals. Energy & amp; Fuels, 2020, 34, 7771-7773.	5.1	0
394	Confronting Racism in Chemistry Journals. ACS Sensors, 2020, 5, 1858-1860.	7.8	0
395	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biochemistry, 2020, 59, 1641-1642.	2.5	0
396	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical & Engineering Data, 2020, 65, 2253-2254.	1.9	0

#	Article	IF	CITATIONS
397	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Process Research and Development, 2020, 24, 872-873.	2.7	0
398	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Omega, 2020, 5, 9624-9625.	3.5	0
399	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Electronic Materials, 2020, 2, 1184-1185.	4.3	0
400	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry C, 2020, 124, 9629-9630.	3.1	0
401	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry Letters, 2020, 11, 3571-3572.	4.6	Ο
402	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Synthetic Biology, 2020, 9, 979-980.	3.8	0
403	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Energy Materials, 2020, 3, 4091-4092.	5.1	Ο
404	Confronting Racism in Chemistry Journals. Journal of Chemical Theory and Computation, 2020, 16, 4003-4005.	5.3	0
405	Confronting Racism in Chemistry Journals. Journal of Organic Chemistry, 2020, 85, 8297-8299.	3.2	0
406	Confronting Racism in Chemistry Journals. Analytical Chemistry, 2020, 92, 8625-8627.	6.5	0
407	Confronting Racism in Chemistry Journals. Journal of Chemical Education, 2020, 97, 1695-1697.	2.3	0
408	Confronting Racism in Chemistry Journals. Organic Process Research and Development, 2020, 24, 1215-1217.	2.7	0
409	Confronting Racism in Chemistry Journals. ACS Sustainable Chemistry and Engineering, 2020, 8, .	6.7	Ο
410	Confronting Racism in Chemistry Journals. Chemistry of Materials, 2020, 32, 5369-5371.	6.7	0
411	Confronting Racism in Chemistry Journals. Chemical Research in Toxicology, 2020, 33, 1511-1513.	3.3	Ο
412	Confronting Racism in Chemistry Journals. Inorganic Chemistry, 2020, 59, 8639-8641.	4.0	0
413	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133.	5.0	0
414	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498.	4.4	0

#	Article	IF	CITATIONS
415	Confronting Racism in Chemistry Journals. ACS Chemical Biology, 2020, 15, 1719-1721.	3.4	Ο
416	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Theory and Computation, 2020, 16, 2881-2882.	5.3	0
417	Confronting Racism in Chemistry Journals. Biomacromolecules, 2020, 21, 2543-2545.	5.4	0
418	Confronting Racism in Chemistry Journals. Journal of Medicinal Chemistry, 2020, 63, 6575-6577.	6.4	0
419	Confronting Racism in Chemistry Journals. Macromolecules, 2020, 53, 5015-5017.	4.8	0
420	Confronting Racism in Chemistry Journals. Organometallics, 2020, 39, 2331-2333.	2.3	0
421	Confronting Racism in Chemistry Journals. Accounts of Chemical Research, 2020, 53, 1257-1259.	15.6	0
422	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry A, 2020, 124, 5271-5273.	2.5	0
423	Confronting Racism in Chemistry Journals. ACS Energy Letters, 2020, 5, 2291-2293.	17.4	0
424	Confronting Racism in Chemistry Journals. Journal of Chemical Information and Modeling, 2020, 60, 3325-3327.	5.4	0
425	Confronting Racism in Chemistry Journals. Journal of Proteome Research, 2020, 19, 2911-2913.	3.7	0
426	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Agricultural and Food Chemistry, 2020, 68, 5019-5020.	5.2	0
427	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry B, 2020, 124, 3603-3604.	2.6	Ο
428	Confronting Racism in Chemistry Journals. Bioconjugate Chemistry, 2020, 31, 1693-1695.	3.6	0
429	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Nano Materials, 2020, 3, 3960-3961.	5.0	Ο
430	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Natural Products, 2020, 83, 1357-1358.	3.0	0
431	Confronting Racism in Chemistry Journals. ACS Synthetic Biology, 2020, 9, 1487-1489.	3.8	Ο
432	Confronting Racism in Chemistry Journals. Journal of Chemical & Engineering Data, 2020, 65, 3403-3405.	1.9	0

#	Article	IF	CITATIONS
433	Update to Our Reader, Reviewer, and Author Communities—April 2020. Bioconjugate Chemistry, 2020, 31, 1211-1212.	3.6	0
434	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Health and Safety, 2020, 27, 133-134.	2.1	0
435	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Research in Toxicology, 2020, 33, 1509-1510.	3.3	0
436	Update to Our Reader, Reviewer, and Author Communities—April 2020. Energy & Fuels, 2020, 34, 5107-5108.	5.1	0
437	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Bio Materials, 2020, 3, 2873-2874.	4.6	0
438	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Organic Chemistry, 2020, 85, 5751-5752.	3.2	0
439	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Society for Mass Spectrometry, 2020, 31, 1006-1007.	2.8	0
440	Update to Our Reader, Reviewer, and Author Communities—April 2020. Accounts of Chemical Research, 2020, 53, 1001-1002.	15.6	0
441	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biomacromolecules, 2020, 21, 1966-1967.	5.4	0
442	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Reviews, 2020, 120, 3939-3940.	47.7	0
443	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science & Technology, 2020, 54, 5307-5308.	10.0	0
444	Update to Our Reader, Reviewer, and Author Communities—April 2020. Langmuir, 2020, 36, 4565-4566.	3.5	0
445	Update to Our Reader, Reviewer, and Author Communities—April 2020. Molecular Pharmaceutics, 2020, 17, 1445-1446.	4.6	0
446	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Infectious Diseases, 2020, 6, 891-892.	3.8	0
447	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Medicinal Chemistry, 2020, 63, 4409-4410.	6.4	0
448	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry A, 2020, 124, 3501-3502.	2.5	0
449	Update to Our Reader, Reviewer, and Author Communities—April 2020. Nano Letters, 2020, 20, 2935-2936.	9.1	0
450	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sensors, 2020, 5, 1251-1252.	7.8	0

#	Article	IF	CITATIONS
451	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Information and Modeling, 2020, 60, 2651-2652.	5.4	0
452	Update to Our Reader, Reviewer, and Author Communities—April 2020. Industrial & Engineering Chemistry Research, 2020, 59, 8509-8510.	3.7	0
453	Update to Our Reader, Reviewer, and Author Communities—April 2020. Inorganic Chemistry, 2020, 59, 5796-5797.	4.0	0
454	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organometallics, 2020, 39, 1665-1666.	2.3	0
455	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Letters, 2020, 22, 3307-3308.	4.6	0
456	Confronting Racism in Chemistry Journals. ACS ES&T Engineering, 2021, 1, 3-5.	7.6	0
457	Confronting Racism in Chemistry Journals. ACS ES&T Water, 2021, 1, 3-5.	4.6	Ο
458	A New Era in Agricultural Science Research Where Innovation in Sustainability Takes Center Stage. ACS Agricultural Science and Technology, 2021, 1, 1-2.	2.3	0
459	Launch of ACS Food Science & Technology in the Middle of a Pandemic World. ACS Food Science & Technology, 2021, 1, 1-2.	2.7	Ο
460	Hochdurchsatzâ€Quantifizierung von geruchsaktiven 2â€Acetyl Azaheterozyklen in Lebensmitteln mittels UHPLCâ€MS/MS. Lebensmittelchemie, 2021, 75, S1-026.	0.0	0
461	Identifizierung geschmacksmodulierender AcetylenfettsĤren in Pfifferlingen (<i>Cantharellus) Tj ETQq1 1 0.7843</i>	814 _. gBT /	Oyerlock 10
462	Identifizierung der fehlgeschmacksverursachenden Substanzen in Rapsprotein. Lebensmittelchemie, 2021, 75, S1-028.	0.0	0
463	Kaempferol 3â€Oâ€{2"â€O‧inapoylâ€Î²â€sophoroside) als Schlüsselbitterstoff in Raspsproteinisolaten. Lebensmittelchemie, 2021, 75, S132.	0.0	0
464	New Horizons in Agricultural and Food Sciences. Journal of Agricultural and Food Chemistry, 2021, 69, 1-3.	5.2	0
465	Guanosine monophosphate reductase regulates uncoupling protein 1 activity. FASEB Journal, 2011, 25, 1044.5.	0.5	0
466	Confronting Racism in Chemistry Journals. ACS Applied Electronic Materials, 2020, 2, 1774-1776.	4.3	0
467	Confronting Racism in Chemistry Journals. Journal of Agricultural and Food Chemistry, 2020, 68, 6941-6943.	5.2	0
468	Confronting Racism in Chemistry Journals. ACS Earth and Space Chemistry, 2020, 4, 961-963.	2.7	0

#	Article	IF	CITATIONS
469	Confronting Racism in Chemistry Journals. Environmental Science and Technology Letters, 2020, 7, 447-449.	8.7	0
470	Confronting Racism in Chemistry Journals. ACS Combinatorial Science, 2020, 22, 327-329.	3.8	0
471	Confronting Racism in Chemistry Journals. ACS Infectious Diseases, 2020, 6, 1529-1531.	3.8	0
472	Confronting Racism in Chemistry Journals. ACS Applied Bio Materials, 2020, 3, 3925-3927.	4.6	0
473	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry C, 2020, 124, 14069-14071.	3.1	0
474	Confronting Racism in Chemistry Journals. ACS Macro Letters, 2020, 9, 1004-1006.	4.8	0
475	Confronting Racism in Chemistry Journals. ACS Photonics, 2020, 7, 1586-1588.	6.6	0
476	Confronting Racism in Chemistry Journals. Environmental Science & Technology, 2020, 54, 7735-7737.	10.0	0
477	Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200.	2.1	0
478	Challenges of the Food Science and Technology Community. ACS Food Science & Technology, 2022, 2, 1-2.	2.7	0
479	Agricultural and Food Science: Historic Growth in Breadth and Impact. Journal of Agricultural and Food Chemistry, 2022, 70, 1-4.	5.2	0
480	Critical Reviews Should Illuminate a Path toward Impactful and Fruitful Lines of Research. ACS Food Science & Technology, 2022, 2, 435-436.	2.7	0
481	Critical Reviews Should Illuminate a Path Toward Impactful and Fruitful Lines of Research. ACS Agricultural Science and Technology, 2022, 2, 1-2.	2.3	0