Sung Chul Jung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/912370/publications.pdf

Version: 2024-02-01

28 papers 1,760 citations

361413 20 h-index 27 g-index

28 all docs

28 docs citations

times ranked

28

3078 citing authors

#	Article	IF	CITATIONS
1	Side reaction in the hydrogen and carbothermal reductions of BaO and BaCO3: The role of an infinitesimal amount of water. Current Applied Physics, 2022, 34, 19-23.	2.4	1
2	Cation-assisted lithium ion diffusion in a lithium oxythioborate halide glass solid electrolyte. Electrochimica Acta, 2022, 426, 140806.	5.2	1
3	Strong lithium-polysulfide anchoring effect of amorphous carbon for lithium–sulfur batteries. Current Applied Physics, 2021, 22, 94-103.	2.4	6
4	The molecular sieving mechanism of a polysulfide-blocking metal–organic framework separator for lithium–sulfur batteries. Journal of Materials Chemistry A, 2021, 9, 23929-23940.	10.3	10
5	Boron-, nitrogen-, aluminum-, and phosphorus-doped graphite electrodes for non-lithium ion batteries. Current Applied Physics, 2020, 20, 988-993.	2.4	8
6	Fe ₂ CS ₂ MXene: a promising electrode for Al-ion batteries. Nanoscale, 2020, 12, 5324-5331.	5.6	35
7	Silicon as the Anode Material for Multivalent-lon Batteries: A First-Principles Dynamics Study. ACS Applied Materials & Samp; Interfaces, 2020, 12, 55746-55755.	8.0	12
8	Comment on "Atomistic Mechanisms of Mg Insertion Reactions in Group XIV Anodes for Mg-Ion Batteriesâ€, ACS Applied Materials & Diterfaces, 2019, 11, 45365-45367.	8.0	4
9	First-principles molecular dynamics study on ultrafast potassium ion transport in silicon anode. Journal of Power Sources, 2019, 415, 119-125.	7.8	36
10	Siteâ€Selective In Situ Electrochemical Doping for Mnâ€Rich Layered Oxide Cathode Materials in Lithiumâ€Ion Batteries. Advanced Energy Materials, 2018, 8, 1702514.	19.5	57
11	The origin of excellent rate and cycle performance of Sn ₄ P ₃ binary electrodes for sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 1772-1779.	10.3	42
12	Cointercalation of Mg ²⁺ lons into Graphite for Magnesium-lon Batteries. Chemistry of Materials, 2018, 30, 3199-3203.	6.7	71
13	Two-Dimensional Phosphorene-Derived Protective Layers on a Lithium Metal Anode for Lithium-Oxygen Batteries. ACS Nano, 2018, 12, 4419-4430.	14.6	115
14	Fast Magnesium Ion Transport in the Bi/Mg ₃ Bi ₂ Two-Phase Electrode. Journal of Physical Chemistry C, 2018, 122, 17643-17649.	3.1	24
15	Origin of excellent rate and cycle performance of Na + -solvent cointercalated graphite vs. poor performance of Li + -solvent case. Nano Energy, 2017, 34, 456-462.	16.0	75
16	Monoclinic sulfur cathode utilizing carbon for high-performance lithium–sulfur batteries. Journal of Power Sources, 2016, 325, 495-500.	7.8	28
17	Flexible Few-Layered Graphene for the Ultrafast Rechargeable Aluminum-Ion Battery. Journal of Physical Chemistry C, 2016, 120, 13384-13389.	3.1	164
18	Atomic-Level Understanding toward a High-Capacity and High-Power Silicon Oxide (SiO) Material. Journal of Physical Chemistry C, 2016, 120, 886-892.	3.1	105

#	Article	IF	CITATIONS
19	Thermodynamic and Kinetic Origins of Lithiation-Induced Amorphous-to-Crystalline Phase Transition of Phosphorus. Journal of Physical Chemistry C, 2015, 119, 12130-12137.	3.1	25
20	Important Role of Functional Groups for Sodium Ion Intercalation in Expanded Graphite. Chemistry of Materials, 2015, 27, 5402-5406.	6.7	79
21	Atom-Level Understanding of the Sodiation Process in Silicon Anode Material. Journal of Physical Chemistry Letters, 2014, 5, 1283-1288.	4.6	127
22	Ultra-low overpotential and high rate capability in Li–O2 batteries through surface atom arrangement of PdCu nanocatalysts. Energy and Environmental Science, 2014, 7, 1362.	30.8	193
23	Polyoxometalateâ€coupled Graphene via Polymeric Ionic Liquid Linker for Supercapacitors. Advanced Functional Materials, 2014, 24, 7301-7309.	14.9	107
24	Sodium Ion Diffusion in Al ₂ O ₃ : A Distinct Perspective Compared with Lithium Ion Diffusion. Nano Letters, 2014, 14, 6559-6563.	9.1	91
25	How Do Li Atoms Pass through the Al ₂ O ₃ Coating Layer during Lithiation in Li-ion Batteries?. Journal of Physical Chemistry Letters, 2013, 4, 2681-2685.	4.6	166
26	Lithium intercalation behaviors in Ge and Sn crystalline surfaces. Physical Chemistry Chemical Physics, 2013, 15, 13586.	2.8	13
27	Anisotropic Volume Expansion of Crystalline Silicon during Electrochemical Lithium Insertion: An Atomic Level Rationale. Nano Letters, 2012, 12, 5342-5347.	9.1	116
28	Facet-dependent lithium intercalation into Si crystals: Si(100) vs. Si(111). Physical Chemistry Chemical Physics, 2011, 13, 21282.	2.8	49