Steven Running

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/912351/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009. Science, 2010, 329, 940-943.	12.6	2,096
2	A Continuous Satellite-Derived Measure of Global Terrestrial Primary Production. BioScience, 2004, 54, 547.	4.9	1,778
3	Trends in the sources and sinks of carbon dioxide. Nature Geoscience, 2009, 2, 831-836.	12.9	1,746
4	Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sensing of Environment, 2005, 95, 164-176.	11.0	1,382
5	WATER IN A CHANGING WORLD. , 2001, 11, 1027-1045.		709
6	FOREST-BGC, A general model of forest ecosystem processes for regional applications. II. Dynamic carbon allocation and nitrogen budgets. Tree Physiology, 1991, 9, 147-160.	3.1	617
7	A continuous satelliteâ€derived global record of land surface evapotranspiration from 1983 to 2006. Water Resources Research, 2010, 46, .	4.2	444
8	Contrasting Climatic Controls on the Estimated Productivity of Global Terrestrial Biomes. Ecosystems, 1998, 1, 206-215.	3.4	407
9	A review of remote sensing based actual evapotranspiration estimation. Wiley Interdisciplinary Reviews: Water, 2016, 3, 834-853.	6.5	380
10	Sensitivity of Moderate Resolution Imaging Spectroradiometer (MODIS) terrestrial primary production to the accuracy of meteorological reanalyses. Journal of Geophysical Research, 2006, 111, .	3.3	364
11	A generalized, bioclimatic index to predict foliar phenology in response to climate. Global Change Biology, 2005, 11, 619-632.	9.5	363
12	Global Terrestrial Gross and Net Primary Productivity from the Earth Observing System. , 2000, , 44-57.		357
13	Systematic assessment of terrestrial biogeochemistry in coupled climate–carbon models. Global Change Biology, 2009, 15, 2462-2484.	9.5	324
14	Remote sensing of temperate coniferous forest leaf area index The influence of canopy closure, understory vegetation and background reflectance. International Journal of Remote Sensing, 1990, 11, 95-111.	2.9	322
15	Large divergence of satellite and Earth system model estimates of global terrestrial CO2Âfertilization. Nature Climate Change, 2016, 6, 306-310.	18.8	309
16	CLIMATE CHANGE: Is Global Warming Causing More, Larger Wildfires?. Science, 2006, 313, 927-928.	12.6	272
17	An operational remote sensing algorithm of land surface evaporation. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	265
18	Vegetation Greening and Climate Change Promote Multidecadal Rises of Global Land Evapotranspiration. Scientific Reports, 2015, 5, 15956.	3.3	265

#	Article	IF	CITATIONS
19	Ecosystem services lost to oil and gas in North America. Science, 2015, 348, 401-402.	12.6	256
20	Forest ecosystem processes at the watershed scale: sensitivity to remotely-sensed Leaf Area Index estimates. International Journal of Remote Sensing, 1993, 14, 2519-2534.	2.9	248
21	A Measurable Planetary Boundary for the Biosphere. Science, 2012, 337, 1458-1459.	12.6	241
22	Ecosystem Disturbance, Carbon, and Climate. Science, 2008, 321, 652-653.	12.6	237
23	FLUXNET and modelling the global carbon cycle. Global Change Biology, 2007, 13, 610-633.	9.5	234
24	China's terrestrial carbon balance: Contributions from multiple global change factors. Global Biogeochemical Cycles, 2011, 25, n/a-n/a.	4.9	231
25	Woody tissue maintenance respiration of four conifers in contrasting climates. Oecologia, 1995, 101, 133-140.	2.0	228
26	A global comparison between station air temperatures and MODIS land surface temperatures reveals the cooling role of forests. Journal of Geophysical Research, 2011, 116, .	3.3	205
27	Creating a topoclimatic daily air temperature dataset for the conterminous United States using homogenized station data and remotely sensed land skin temperature. International Journal of Climatology, 2015, 35, 2258-2279.	3.5	162
28	A unified vegetation index for quantifying the terrestrial biosphere. Science Advances, 2021, 7, .	10.3	160
29	Estimation of incident photosynthetically active radiation from Moderate Resolution Imaging Spectrometer data. Journal of Geophysical Research, 2006, 111, .	3.3	159
30	Artificial amplification of warming trends across the mountains of the western United States. Geophysical Research Letters, 2015, 42, 153-161.	4.0	136
31	Modeled responses of terrestrial ecosystems to elevated atmospheric CO 2 : a comparison of simulations by the biogeochemistry models of the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP). Oecologia, 1998, 114, 389-404.	2.0	132
32	Satellite Finds Highest Land Skin Temperatures on Earth. Bulletin of the American Meteorological Society, 2011, 92, 855-860.	3.3	118
33	Effects of precipitation and soil water potential on drought deciduous phenology in the Kalahari. Global Change Biology, 2004, 10, 303-308.	9.5	114
34	Evaluating water stress controls on primary production in biogeochemical and remote sensing based models. Journal of Geophysical Research, 2007, 112, .	3.3	108
35	The global NPP dependence on ENSO: La Niña and the extraordinary year of 2011. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 1247-1255.	3.0	101
36	Satelliteâ€based model detection of recent climateâ€driven changes in northern highâ€latitude vegetation productivity. Journal of Geophysical Research, 2008, 113, .	3.3	99

#	Article	IF	CITATIONS
37	Terrestrial primary production for the conterminous United States derived from Landsat 30 m and <scp>MODIS</scp> 250 m. Remote Sensing in Ecology and Conservation, 2018, 4, 264-280.	4.3	98
38	Future global productivity will be affected by plant trait response to climate. Scientific Reports, 2018, 8, 2870.	3.3	95
39	Estimating climate change effects on net primary production of rangelands in the United States. Climatic Change, 2014, 126, 429-442.	3.6	85
40	Decreasing net primary production due to drought and slight decreases in solar radiation in China from 2000 to 2012. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 261-278.	3.0	80
41	Impacts of climate change on August stream discharge in the Central-Rocky Mountains. Climatic Change, 2012, 112, 997-1014.	3.6	75
42	Global Estimation of Biophysical Variables from Google Earth Engine Platform. Remote Sensing, 2018, 10, 1167.	4.0	75
43	Satellite assessment of land surface evapotranspiration for the panâ€Arctic domain. Water Resources Research, 2009, 45, .	4.2	74
44	European land CO2 sink influenced by NAO and East-Atlantic Pattern coupling. Nature Communications, 2016, 7, 10315.	12.8	74
45	Suitable Days for Plant Growth Disappear under Projected Climate Change: Potential Human and Biotic Vulnerability. PLoS Biology, 2015, 13, e1002167.	5.6	73
46	Multispectral high resolution sensor fusion for smoothing and gap-filling in the cloud. Remote Sensing of Environment, 2020, 247, 111901.	11.0	67
47	Response to Comments on "Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009â€. Science, 2011, 333, 1093-1093.	12.6	65
48	Improving ecosystem productivity modeling through spatially explicit estimation of optimal light use efficiency. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1755-1769.	3.0	64
49	Comparison of Gross Primary Productivity Derived from GIMMS NDVI3g, GIMMS, and MODIS in Southeast Asia. Remote Sensing, 2014, 6, 2108-2133.	4.0	59
50	Modeling and Monitoring Terrestrial Primary Production in a Changing Global Environment: Toward a Multiscale Synthesis of Observation and Simulation. Advances in Meteorology, 2014, 2014, 1-17.	1.6	54
51	Comparison of available soil water capacity estimated from topography and soil series information. Landscape Ecology, 1996, 11, 3-14.	4.2	47
52	ASSESSING SIMULATED ECOSYSTEM PROCESSES FOR CLIMATE VARIABILITY RESEARCH AT GLACIER NATIONAL PARK, USA. , 1998, 8, 805-823.		46
53	Contribution of increasing CO ₂ and climate change to the carbon cycle in China's ecosystems. Journal of Geophysical Research, 2008, 113, .	3.3	46
54	El Niño-Southern Oscillation-induced variability in terrestrial carbon cycling. Journal of Geophysical Research, 2004, 109, .	3.3	42

#	Article	IF	CITATIONS
55	Improving Global Gross Primary Productivity Estimates by Computing Optimum Light Use Efficiencies Using Flux Tower Data. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 2939-2951.	3.0	41
56	Where are the hottest spots on Earth?. Eos, 2006, 87, 461-467.	0.1	35
57	Satellite monitoring of global land cover changes and their impact on climate. Climatic Change, 1995, 31, 395-413.	3.6	34
58	Aggregate measures of ecosystem services: can we take the pulse of nature?. Frontiers in Ecology and the Environment, 2005, 3, 56-59.	4.0	34
59	Evolution of hydrological and carbon cycles under a changing climate. Hydrological Processes, 2011, 25, 4093-4102.	2.6	34
60	Agricultural conversion without external water and nutrient inputs reduces terrestrial vegetation productivity. Geophysical Research Letters, 2014, 41, 449-455.	4.0	29
61	Topographic and climatic controls on soil environments and net primary production in a rugged temperate hardwood forest in Korea. Ecological Research, 2006, 21, 64-74.	1.5	27
62	Impacts of largeâ€scale oscillations on panâ€Arctic terrestrial net primary production. Geophysical Research Letters, 2007, 34, .	4.0	27
63	Sensitivity of pan-Arctic terrestrial net primary productivity simulations to daily surface meteorology from NCEP-NCAR and ERA-40 reanalyses. Journal of Geophysical Research, 2007, 112, .	3.3	23
64	WATERSHED RESPONSES TO CLIMATE CHANGE AT GLACIER NATIONAL PARK. Journal of the American Water Resources Association, 1997, 33, 755-765.	2.4	19
65	Decrease in winter respiration explains 25% of the annual northern forest carbon sink enhancement over the last 30 years. Clobal Ecology and Biogeography, 2016, 25, 586-595.	5.8	16
66	Title is missing!. Climatic Change, 2000, 47, 167-191.	3.6	15
67	Quantifying water stress effect on daily light use efficiency in Mediterranean ecosystems using satellite data. International Journal of Digital Earth, 2017, 10, 623-638.	3.9	11
68	Seasonality of biological and physical systems as indicators of climatic variation and change. Climatic Change, 2020, 163, 1755-1771.	3.6	9
69	Terrestrial primary productivity indicators for inclusion in the National Climate Indicators System. Climatic Change, 2020, 163, 1855-1868.	3.6	8
70	Variation in stability of elk and red deer populations with abiotic and biotic factors at the speciesâ€distribution scale. Ecology, 2016, 97, 3184-3194.	3.2	7
71	Application of spaceborne scatterometer for mapping freeze-thaw state in northern landscapes as a measure of ecological and hydrological processes. , 0, , .		6
72	New satellite technologies enhance study of terrestrial biosphere. Eos, 2002, 83, 458-460.	0.1	5

#	Article	IF	CITATIONS
73	Monitoring global vegetation using moderate-resolution satellites. Eos, 2006, 87, 568.	0.1	5
74	Terrestrial Observation and Prediction System: integration of satellite and surface weather observations with ecosystem models. , 0, , .		4
75	Next-generation terrestrial carbon monitoring. Geophysical Monograph Series, 2009, , 49-69.	0.1	4
76	Climate–growth relationships of relictPicea jezoensisat Mt. Gyebang, South Korea. Forest Science and Technology, 2015, 11, 19-26.	0.8	4
77	Fuzzy Logic Merger of Spectral and Ecological Information for Improved Montane Forest Mapping. Geocarto International, 2002, 17, 61-68.	3.5	3
78	Global land data sets for next-generation biospheric monitoring. Eos, 2004, 85, 543.	0.1	2
79	WATER IN A CHANGING WORLD. , 2001, 11, 1027.		2
80	Interpolation and Gap Filling of Landsat Reflectance Time Series. , 2018, , .		1
81	Down-Scaling Modis Vegetation Products with Landsat GAP Filled Surface Reflectance in Google Earth Engine. , 2020, , .		1
82	Global Satellite Vegetation Monitoring: Long Term Global Monitoring of Vegetation Variables Using Moderate Resolution Satellites; Missoula, Montana, 16-19 June 2009. Eos, 2009, 90, 388-388.	0.1	0
83	Pushing the Planetary Boundaries—Response. Science, 2012, 338, 1420-1420.	12.6	0
84	Inside Cover Image, Volume 3, Issue 6. Wiley Interdisciplinary Reviews: Water, 2016, 3, ii.	6.5	0
85	Global Upscaling of the MODIS Land Cover with Google Earth Engine and Landsat Data. , 2021, , .		0