
Laura G Reinholdt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9122364/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Mutant Mouse Resource and Research Center (MMRRC): the NIH-supported National Public Repository and Distribution Archive of Mutant Mouse Models in the USA. Mammalian Genome, 2022, 33, 203-212.	2.2	13
2	Genetic control of the pluripotency epigenome determines differentiation bias in mouse embryonic stem cells. EMBO Journal, 2022, 41, e109445.	7.8	5
3	Mouse Genetic Reference Populations: Cellular Platforms for Integrative Systems Genetics. Trends in Genetics, 2021, 37, 251-265.	6.7	12
4	Genetic analysis of <i>Pycr1</i> and <i>Pycr2</i> in mice. Genetics, 2021, 218, .	2.9	6
5	Sex-specific phenotypic effects and evolutionary history of an ancient polymorphic deletion of the human growth hormone receptor. Science Advances, 2021, 7, eabi4476.	10.3	11
6	Micronuclei in <i>Kif18a</i> mutant mice form stable micronuclear envelopes and do not promote tumorigenesis. Journal of Cell Biology, 2021, 220, .	5.2	20
7	Heritable variation in locomotion, reward sensitivity and impulsive behaviors in a genetically diverse inbred mouse panel. Genes, Brain and Behavior, 2021, 20, e12773.	2.2	17
8	Content and Performance of the MiniMUGA Genotyping Array: A New Tool To Improve Rigor and Reproducibility in Mouse Research. Genetics, 2020, 216, 905-930.	2.9	58
9	Naive Pluripotent Stem Cells Exhibit Phenotypic Variability that Is Driven by Genetic Variation. Cell Stem Cell, 2020, 27, 470-481.e6.	11.1	38
10	Mapping the Effects of Genetic Variation on Chromatin State and Gene Expression Reveals Loci That Control Ground State Pluripotency. Cell Stem Cell, 2020, 27, 459-469.e8.	11.1	31
11	Allelic variants between mouse substrains BALB/cJ and BALB/cByJ influence mononuclear cardiomyocyte composition and cardiomyocyte nuclear ploidy. Scientific Reports, 2020, 10, 7605.	3.3	11
12	Large-scale discovery of mouse transgenic integration sites reveals frequent structural variation and insertional mutagenesis. Genome Research, 2019, 29, 494-505.	5.5	130
13	The Genome of C57BL/6J "Eveâ€; the Mother of the Laboratory Mouse Genome Reference Strain. G3: Genes, Genomes, Genetics, 2019, 9, 1795-1805.	1.8	49
14	High-Diversity Mouse Populations for Complex Traits. Trends in Genetics, 2019, 35, 501-514.	6.7	116
15	Mitotic chromosome alignment ensures mitotic fidelity by promoting interchromosomal compaction during anaphase. Journal of Cell Biology, 2019, 218, 1148-1163.	5.2	65
16	ENUâ€induced mutant allele of <i>Dnah1</i> , <i>ferf1</i> , causes abnormal sperm behavior and fertilization failure in mice. Molecular Reproduction and Development, 2019, 86, 416-425.	2.0	10
17	Sixteen diverse laboratory mouse reference genomes define strain-specific haplotypes and novel functional loci. Nature Genetics, 2018, 50, 1574-1583.	21.4	169
18	Biallelic mutations in FDXR cause neurodegeneration associated with inflammation. Journal of Human Genetics, 2018, 63, 1211-1222.	2.3	23

LAURA G REINHOLDT

#	Article	IF	CITATIONS
19	CRISPRtools: a flexible computational platform for performing CRISPR/Cas9 experiments in the mouse. Mammalian Genome, 2017, 28, 283-290.	2.2	8
20	Biallelic mutations in the ferredoxin reductase gene cause novel mitochondriopathy with optic atrophy. Human Molecular Genetics, 2017, 26, 4937-4950.	2.9	32
21	A missense mutation in <i>Grm6</i> reduces but does not eliminate mGluR6 expression or rod depolarizing bipolar cell function. Journal of Neurophysiology, 2017, 118, 845-854.	1.8	13
22	Discovery and characterization of spontaneous mouse models of craniofacial dysmorphology. Developmental Biology, 2016, 415, 216-227.	2.0	32
23	Spontaneous 8bp Deletion in Nbeal2 Recapitulates the Gray Platelet Syndrome in Mice. PLoS ONE, 2016, 11, e0150852.	2.5	13
24	DBA/2J Genetic Background Exacerbates Spontaneous Lethal Seizures but Lessens Amyloid Deposition in a Mouse Model of Alzheimer's Disease. PLoS ONE, 2015, 10, e0125897.	2.5	27
25	Dsprul: A spontaneous mouse mutation in desmoplakin as a model of Carvajal-Huerta syndrome. Experimental and Molecular Pathology, 2015, 98, 164-172.	2.1	13
26	Exome sequencing reveals pathogenic mutations in 91 strains of mice with Mendelian disorders. Genome Research, 2015, 25, 948-957.	5.5	54
27	Nuclear localization of PRDM9 and its role in meiotic chromatin modifications and homologous synapsis. Chromosoma, 2015, 124, 397-415.	2.2	61
28	Global genetic analysis in mice unveils central role for cilia in congenital heart disease. Nature, 2015, 521, 520-524.	27.8	357
29	Kif18a is specifically required for mitotic progression during germ line development. Developmental Biology, 2015, 402, 253-262.	2.0	53
30	Interrogating Congenital Heart Defects With Noninvasive Fetal Echocardiography in a Mouse Forward Genetic Screen. Circulation: Cardiovascular Imaging, 2014, 7, 31-42.	2.6	38
31	Derivation and characterization of mouse embryonic stem cells from permissive and nonpermissive strains. Nature Protocols, 2014, 9, 559-574.	12.0	143
32	Discovery of transgene insertion sites by high throughput sequencing of mate pair libraries. BMC Genomics, 2014, 15, 367.	2.8	28
33	A Mutation in the Nuclear Pore Complex Gene Tmem48 Causes Gametogenesis Defects in Skeletal Fusions with Sterility (sks) Mice. Journal of Biological Chemistry, 2013, 288, 31830-31841.	3.4	12
34	High throughput sequencing approaches to mutation discovery in the mouse. Mammalian Genome, 2012, 23, 499-513.	2.2	5
35	Discovery Genetics: The History and Future of Spontaneous Mutation Research. Current Protocols in Mouse Biology, 2012, 2, 103-118.	1.2	17
36	The Impact of Entropy on the Spatial Organization of Synaptonemal Complexes within the Cell Nucleus. PLoS ONE, 2012, 7, e36282.	2.5	7

Laura G Reinholdt

#	Article	IF	CITATIONS
37	Generating Embryonic Stem Cells from the Inbred Mouse Strain DBA/2J, a Model of Glaucoma and Other Complex Diseases. PLoS ONE, 2012, 7, e50081.	2.5	8
38	Mutation discovery in mice by whole exome sequencing. Genome Biology, 2011, 12, R86.	9.6	102
39	Mouse genomic variation and its effect on phenotypes and gene regulation. Nature, 2011, 477, 289-294.	27.8	1,461
40	Altered testicular gene expression patterns in mice lacking the polyubiquitin gene <i>Ubb</i> . Molecular Reproduction and Development, 2011, 78, 415-425.	2.0	20
41	Molecular characterization of the translocation breakpoints in the Down syndrome mouse model Ts65Dn. Mammalian Genome, 2011, 22, 685-691.	2.2	155
42	BMD regulation on mouse distal chromosome 1, candidate genes, and response to ovariectomy or dietary fat. Journal of Bone and Mineral Research, 2011, 26, 88-99.	2.8	18
43	Mutations in Sterol O-Acyltransferase 1 (Soat1) Result in Hair Interior Defects in AKR/J Mice. Journal of Investigative Dermatology, 2010, 130, 2666-2668.	0.7	25
44	Meiotic behavior of aneuploid chromatin in mouse models of Down syndrome. Chromosoma, 2009, 118, 723-736.	2.2	20
45	Mutation discovery in the mouse using genetically guided array capture and resequencing. Mammalian Genome, 2009, 20, 424-436.	2.2	29
46	The Mouse Polyubiquitin Gene <i>Ubb</i> Is Essential for Meiotic Progression. Molecular and Cellular Biology, 2008, 28, 1136-1146.	2.3	87
47	Mutation in Mouse Hei10, an E3 Ubiquitin Ligase, Disrupts Meiotic Crossing Over. PLoS Genetics, 2007, 3, e139.	3.5	108
48	The mouse gcd2 mutation causes primordial germ cell depletion. Mechanisms of Development, 2006, 123, 559-569.	1.7	13
49	Mutagenesis as an unbiased approach to identify novel contraceptive targets. Molecular and Cellular Endocrinology, 2006, 250, 201-205.	3.2	63
50	Meil is epistatic to Dmcl during mouse meiosis. Chromosoma, 2005, 114, 127-134.	2.2	64
51	Forward Genetic Screens for Meiotic and Mitotic Recombination-Defective Mutants in Mice. , 2004, 262, 087-108.		39
52	Toward the Genetics of Mammalian Reproduction: Induction and Mapping of Gametogenesis Mutants in Mice1. Biology of Reproduction, 2003, 69, 1615-1625.	2.7	61
53	Positional cloning and characterization of Mei1, a vertebrate-specific gene required for normal meiotic chromosome synapsis in mice. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15706-15711.	7.1	111
54	Meiotic chromosome missegregation during apyrene meiosis in the gypsy moth, Lymantria dispar, is preceded by an aberrant prophase I. Chromosoma, 2002, 111, 139-146.	2.2	4