Wendell A Lim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9121598/publications.pdf

Version: 2024-02-01

101543 182427 10,439 56 36 citations h-index g-index papers

57 57 57 12982 all docs docs citations times ranked citing authors

51

#	Article	IF	CITATIONS
1	T cells selectively filter oscillatory signals on the minutes timescale. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	33
2	T cell circuits that sense antigen density with an ultrasensitive threshold. Science, 2021, 371, 1166-1171.	12.6	99
3	SynNotch-CAR T cells overcome challenges of specificity, heterogeneity, and persistence in treating glioblastoma. Science Translational Medicine, 2021, 13, .	12.4	215
4	Discriminatory Power of Combinatorial Antigen Recognition in Cancer T Cell Therapies. Cell Systems, 2020, 11, 215-228.e5.	6.2	52
5	Engineering synthetic morphogen systems that can program multicellular patterning. Science, 2020, 370, 327-331.	12.6	82
6	Engineering cytokines and cytokine circuits. Science, 2020, 370, 1034-1035.	12.6	20
7	Precise T cell recognition programs designed by transcriptionally linking multiple receptors. Science, 2020, 370, 1099-1104.	12.6	85
8	Engineering T Cells to Treat Cancer: The Convergence of Immuno-Oncology and Synthetic Biology. Annual Review of Cancer Biology, 2020, 4, 121-139.	4.5	13
9	The Design Principles of Biochemical Timers: Circuits that Discriminate between Transient and Sustained Stimulation. Cell Systems, 2019, 9, 297-308.e2.	6.2	27
10	Simple Rules Determine Distinct Patterns of Branching Morphogenesis. Cell Systems, 2019, 9, 221-227.	6.2	9
11	High-throughput multicolor optogenetics in microwell plates. Nature Protocols, 2019, 14, 2205-2228.	12.0	78
12	Engineering cell–cell communication networks: programming multicellular behaviors. Current Opinion in Chemical Biology, 2019, 52, 31-38.	6.1	51
13	Synthetic development: learning to program multicellular self-organization. Current Opinion in Systems Biology, 2019, 14, 41-49.	2.6	21
14	Building a Stable Relationship: Ensuring Homeostasis among Cell Types within a Tissue. Cell, 2018, 172, 638-640.	28.9	0
15	Cancer mutations and targeted drugs can disrupt dynamic signal encoding by the Ras-Erk pathway. Science, 2018, 361, .	12.6	118
16	Programming self-organizing multicellular structures with synthetic cell-cell signaling. Science, 2018, 361, 156-162.	12.6	343
17	Interrogating cellular perception and decision making with optogenetic tools. Journal of Cell Biology, 2017, 216, 25-28.	5 . 2	30
18	The Principles of Engineering Immune Cells to Treat Cancer. Cell, 2017, 168, 724-740.	28.9	844

#	Article	IF	Citations
19	Synthetic Immunology: Hacking Immune Cells to Expand Their Therapeutic Capabilities. Annual Review of Immunology, 2017, 35, 229-253.	21.8	96
20	Engineering Therapeutic T Cells: From Synthetic Biology to Clinical Trials. Annual Review of Pathology: Mechanisms of Disease, 2017, 12, 305-330.	22.4	54
21	Design of Tunable Oscillatory Dynamics in a Synthetic NF-κB Signaling Circuit. Cell Systems, 2017, 5, 460-470.e5.	6.2	39
22	Tracing Information Flow from Erk to Target Gene Induction Reveals Mechanisms of Dynamic and Combinatorial Control. Molecular Cell, 2017, 67, 757-769.e5.	9.7	133
23	Nucleosome breathing and remodeling constrain CRISPR-Cas9 function. ELife, 2016, 5, .	6.0	193
24	Mapping the functional versatility and fragility of Ras GTPase signaling circuits through in vitro network reconstitution. ELife, 2016, 5, .	6.0	12
25	CRISPR/Cas9 for Human Genome Engineering and Disease Research. Annual Review of Genomics and Human Genetics, 2016, 17, 131-154.	6.2	80
26	Engineering T Cells with Customized Therapeutic Response Programs Using Synthetic Notch Receptors. Cell, 2016, 167, 419-432.e16.	28.9	485
27	Cellular perception and misperception: Internal models for decisionâ€making shaped by evolutionary experience. BioEssays, 2016, 38, 845-849.	2.5	21
28	Modular engineering of cellular signaling proteins and networks. Current Opinion in Structural Biology, 2016, 39, 106-114.	5.7	59
29	Complex transcriptional modulation with orthogonal and inducible dCas9 regulators. Nature Methods, 2016, 13, 1043-1049.	19.0	271
30	Engineering dynamical control of cell fate switching using synthetic phospho-regulons. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13528-13533.	7.1	48
31	Precision Tumor Recognition by T Cells With Combinatorial Antigen-Sensing Circuits. Cell, 2016, 164, 770-779.	28.9	737
32	Engineering Customized Cell Sensing and Response Behaviors Using Synthetic Notch Receptors. Cell, 2016, 164, 780-791.	28.9	679
33	Expanding the CRISPR imaging toolset with <i>Staphylococcus aureus</i> Cas9 for simultaneous imaging of multiple genomic loci. Nucleic Acids Research, 2016, 44, e75-e75.	14.5	155
34	Beyond editing: repurposing CRISPR–Cas9 for precision genome regulation and interrogation. Nature Reviews Molecular Cell Biology, 2016, 17, 5-15.	37.0	698
35	Synthetic biology approaches to engineer T cells. Current Opinion in Immunology, 2015, 35, 123-130.	5.5	34
36	Remote control of therapeutic T cells through a small molecule–gated chimeric receptor. Science, 2015, 350, aab4077.	12.6	543

#	Article	IF	Citations
37	Differential genetic interactions of yeast stress response <scp>MAPK</scp> pathways. Molecular Systems Biology, 2015, 11, 800.	7.2	47
38	Oscillatory stress stimulation uncovers an Achilles' heel of the yeast MAPK signaling network. Science, 2015, 350, 1379-1383.	12.6	86
39	Engineering Complex Synthetic Transcriptional Programs with CRISPR RNA Scaffolds. Cell, 2015, 160, 339-350.	28.9	809
40	Sending Mixed Messages for Cell Population Control. Cell, 2014, 158, 973-975.	28.9	14
41	Bridging cross-cultural gaps in scientific exchange through innovative team challenge workshops. Quantitative Biology, $2013, 1, 3-8$.	0.5	0
42	Using Optogenetics to Interrogate the Dynamic Control of Signal Transmission by the Ras/Erk Module. Cell, 2013, 155, 1422-1434.	28.9	476
43	Design Principles of Regulatory Networks: Searching for the Molecular Algorithms of the Cell. Molecular Cell, 2013, 49, 202-212.	9.7	139
44	Response to Comment on "Positive Selection of Tyrosine Loss in Metazoan Evolution― Science, 2011, 332, 917-917.	12.6	15
45	Light-based feedback for controlling intracellular signaling dynamics. Nature Methods, 2011, 8, 837-839.	19.0	249
46	Build life to understand it. Nature, 2010, 468, 889-890.	27.8	196
47	Designing customized cell signalling circuits. Nature Reviews Molecular Cell Biology, 2010, 11, 393-403.	37.0	237
48	Phosphotyrosine Signaling: Evolving a New Cellular Communication System. Cell, 2010, 142, 661-667.	28.9	316
49	The Design Logic of Cell Signaling Systems. FASEB Journal, 2010, 24, 410.2.	0.5	0
50	Frederic M Richards 1925–2009. Nature Structural and Molecular Biology, 2009, 16, 230-232.	8.2	0
51	The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature, 2008, 451, 783-788.	27.8	1,006
52	The Modular Logic of Cell Signaling Systems. FASEB Journal, 2006, 20, A1473.	0.5	0
53	The modular logic of signaling proteins: building allosteric switches from simple binding domains. Current Opinion in Structural Biology, 2002, 12, 61-68.	5.7	135
54	An Analysis of the Interactions between the Semâ^'5 SH3 Domain and Its Ligands Using Molecular Dynamics, Free Energy Calculations, and Sequence Analysis. Journal of the American Chemical Society, 2001, 123, 3986-3994.	13.7	130

#	Article	IF	CITATIONS
55	Energetic Determinants of Internal Motif Recognition by PDZ Domains. Biochemistry, 2001, 40, 5921-5930.	2.5	116
56	The double life of PX domains., 2001, 8, 570-572.		7