Sarah Burke-Spolaor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9121585/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The International Pulsar Timing Array second data release: Search for an isotropic gravitational wave background. Monthly Notices of the Royal Astronomical Society, 2022, 510, 4873-4887.	4.4	174
2	Characterizing the Fast Radio Burst Host Galaxy Population and its Connection to Transients in the Local and Extragalactic Universe. Astronomical Journal, 2022, 163, 69.	4.7	91
3	A repeating fast radio burst source in a globular cluster. Nature, 2022, 602, 585-589.	27.8	110
4	The host galaxy and persistent radio counterpart of FRB 20201124A. Monthly Notices of the Royal Astronomical Society, 2022, 513, 982-990.	4.4	38
5	Pulsar Timing Array Experiments. , 2022, , 157-198.		1
6	A repeating fast radio burst associated with a persistent radio source. Nature, 2022, 606, 873-877.	27.8	98
7	Deep Very Long Baseline Interferometry Observations Challenge Previous Evidence of a Binary Supermassive Black Hole Residing in Seyfert Galaxy NGC 7674. Astrophysical Journal, 2022, 933, 143.	4.5	3
8	Chandra Observations of Abell 2261 Brightest Cluster Galaxy, a Candidate Host to a Recoiling Black Hole. Astrophysical Journal, 2021, 906, 48.	4.5	7
9	Pulsar Timing Array Experiments. , 2021, , 1-42.		7
10	Astrophysics Milestones for Pulsar Timing Array Gravitational-wave Detection. Astrophysical Journal Letters, 2021, 911, L34.	8.3	66
11	The Location of Young Pulsar PSR J0837–2454: Galactic Halo or Local Supernova Remnant?. Astrophysical Journal, 2021, 911, 121.	4.5	2
12	Multiwavelength Follow-up of FRB180309. Astrophysical Journal, 2021, 913, 78.	4.5	2
13	The Search for Binary Supermassive Black Holes among Quasars with Offset Broad Lines Using the Very Long Baseline Array. Astrophysical Journal, 2021, 914, 37.	4.5	9
14	The NANOGrav 11 yr Data Set: Limits on Supermassive Black Hole Binaries in Galaxies within 500 Mpc. Astrophysical Journal, 2021, 914, 121.	4.5	21
15	Robust Assessment of Clustering Methods for Fast Radio Transient Candidates. Astrophysical Journal, 2021, 914, 53.	4.5	3
16	The NANOGrav 12.5 yr Data Set: Observations and Narrowband Timing of 47 Millisecond Pulsars. Astrophysical Journal, Supplement Series, 2021, 252, 4.	7.7	98
17	The NANOGrav 12.5 yr Data Set: Wideband Timing of 47 Millisecond Pulsars. Astrophysical Journal, Supplement Series, 2021, 252, 5.	7.7	64
18	Comprehensive Analysis of a Dense Sample of FRB 121102 Bursts. Astrophysical Journal, 2021, 922, 115.	4.5	16

SARAH BURKE-SPOLAOR

#	Article	IF	CITATIONS
19	Searching for Gravitational Waves from Cosmological Phase Transitions with the NANOGrav 12.5-Year Dataset. Physical Review Letters, 2021, 127, 251302.	7.8	62
20	The NANOGrav 12.5-year Data Set: Search for Non-Einsteinian Polarization Modes in the Gravitational-wave Background. Astrophysical Journal Letters, 2021, 923, L22.	8.3	30
21	A repeating fast radio burst source localized to a nearby spiral galaxy. Nature, 2020, 577, 190-194.	27.8	297
22	A targeted search for repeating fast radio bursts associated with gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2020, 501, 541-547.	4.4	4
23	FETCH: A deep-learning based classifier for fast transient classification. Monthly Notices of the Royal Astronomical Society, 2020, 497, 1661-1674.	4.4	71
24	The NANOGrav 11 yr Data Set: Evolution of Gravitational-wave Background Statistics. Astrophysical Journal, 2020, 890, 108.	4.5	28
25	The NANOGrav 11 yr Data Set: Limits on Gravitational Wave Memory. Astrophysical Journal, 2020, 889, 38.	4.5	36
26	The Karl G. Jansky Very Large Array Sky Survey (VLASS). Science Case and Survey Design. Publications of the Astronomical Society of the Pacific, 2020, 132, 035001.	3.1	337
27	A pulsar-based time-scale from the International Pulsar Timing Array. Monthly Notices of the Royal Astronomical Society, 2020, 491, 5951-5965.	4.4	51
28	Modeling the Uncertainties of Solar System Ephemerides for Robust Gravitational-wave Searches with Pulsar-timing Arrays. Astrophysical Journal, 2020, 893, 112.	4.5	49
29	The High Time Resolution Universe Pulsar Survey – XVI. Discovery and timing of 40 pulsars from the southern Galactic plane. Monthly Notices of the Royal Astronomical Society, 2020, 493, 1063-1087.	4.4	20
30	A Distant Fast Radio Burst Associated with Its Host Galaxy by the Very Large Array. Astrophysical Journal, 2020, 899, 161.	4.5	62
31	Multimessenger Gravitational-wave Searches with Pulsar Timing Arrays: Application to 3C 66B Using the NANOGrav 11-year Data Set. Astrophysical Journal, 2020, 900, 102.	4.5	30
32	The NANOGrav 12.5Âyr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background. Astrophysical Journal Letters, 2020, 905, L34.	8.3	528
33	VLA/Realfast Detection of a Burst from FRB 180916.J0158+65 and Tests for Periodic Activity. Research Notes of the AAS, 2020, 4, 94.	0.7	22
34	Your: Your Unified Reader. Journal of Open Source Software, 2020, 5, 2750.	4.6	9
35	The NANOGrav 11 yr Data Set: Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries. Astrophysical Journal, 2019, 880, 116.	4.5	102
36	Commensal discovery of four fast radio bursts during Parkes Pulsar Timing Array observations. Monthly Notices of the Royal Astronomical Society, 2019, 488, 868-875.	4.4	31

#	Article	lF	CITATIONS
37	The astrophysics of nanohertz gravitational waves. Astronomy and Astrophysics Review, 2019, 27, 1.	25.5	166
38	The International Pulsar Timing Array: second data release. Monthly Notices of the Royal Astronomical Society, 2019, 490, 4666-4687.	4.4	191
39	Non-detection of fast radio bursts from six gamma-ray burst remnants with possible magnetar engines. Monthly Notices of the Royal Astronomical Society, 2019, 489, 3643-3647.	4.4	17
40	Investigating the Candidate Displaced Active Galactic Nucleus in NGC 3115. Astrophysical Journal, 2019, 874, 113.	4.5	3
41	The High Time Resolution Universe survey – XIV. Discovery of 23 pulsars through GPU-accelerated reprocessing. Monthly Notices of the Royal Astronomical Society, 2019, 483, 3673-3685.	4.4	38
42	Constraints on the H i Mass for NGC 1052-DF2. Astrophysical Journal Letters, 2019, 871, L31.	8.3	16
43	The High Time Resolution Universe Pulsar Survey – XV. Completion of the intermediate-latitude survey with the discovery and timing of 25 further pulsars. Monthly Notices of the Royal Astronomical Society, 2019, 484, 5791-5801.	4.4	10
44	A Search for Late-time Radio Emission and Fast Radio Bursts from Superluminous Supernovae. Astrophysical Journal, 2019, 886, 24.	4.5	28
45	The High Time Resolution Universe Pulsar Survey – XIII. PSR J1757â^'1854, the most accelerated binary pulsar. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 475, L57-L61.	3.3	79
46	The SUrvey for Pulsars and Extragalactic Radio Bursts – I. Survey description and overview. Monthly Notices of the Royal Astronomical Society, 2018, 473, 116-135.	4.4	82
47	The NANOGrav 11-year Data Set: High-precision Timing of 45 Millisecond Pulsars. Astrophysical Journal, Supplement Series, 2018, 235, 37.	7.7	448
48	The SUrvey for Pulsars and Extragalactic Radio Bursts – II. New FRB discoveries and their follow-up. Monthly Notices of the Royal Astronomical Society, 2018, 475, 1427-1446.	4.4	156
49	Studying the Solar system with the International Pulsar Timing Array. Monthly Notices of the Royal Astronomical Society, 2018, 481, 5501-5516.	4.4	36
50	Vys: A Protocol for Commensal Fast Transient Searches and Data Processing at the Very Large Array. Journal of Astronomical Instrumentation, 2018, 07, .	1.5	1
51	Multiple messengers of fast radio bursts. Nature Astronomy, 2018, 2, 845-848.	10.1	11
52	<i>realfast:</i> Real-time, Commensal Fast Transient Surveys with the Very Large Array. Astrophysical Journal, Supplement Series, 2018, 236, 8.	7.7	46
53	The NANOGrav 11 Year Data Set: Pulsar-timing Constraints on the Stochastic Gravitational-wave Background. Astrophysical Journal, 2018, 859, 47.	4.5	331
54	Highest Frequency Detection of FRB 121102 at 4–8 GHz Using the Breakthrough Listen Digital Backend at the Green Bank Telescope. Astrophysical Journal, 2018, 863, 2.	4.5	226

#	Article	IF	CITATIONS
55	The Host Galaxy and Redshift of the Repeating Fast Radio Burst FRB 121102. Astrophysical Journal Letters, 2017, 834, L7.	8.3	495
56	A direct localization of a fast radio burst and its host. Nature, 2017, 541, 58-61.	27.8	616
57	The Repeating Fast Radio Burst FRB 121102 as Seen on Milliarcsecond Angular Scales. Astrophysical Journal Letters, 2017, 834, L8.	8.3	300
58	The seeds of tremendous gravity. Nature Astronomy, 2017, 1, 659-660.	10.1	0
59	Simultaneous X-Ray, Gamma-Ray, and Radio Observations of the Repeating Fast Radio Burst FRB 121102. Astrophysical Journal, 2017, 846, 80.	4.5	99
60	A Multi-telescope Campaign on FRB 121102: Implications for the FRB Population. Astrophysical Journal, 2017, 850, 76.	4.5	148
61	The local nanohertz gravitational-wave landscape from supermassive black hole binaries. Nature Astronomy, 2017, 1, 886-892.	10.1	99
62	The Nonhomogeneous Poisson Process for Fast Radio Burst Rates. Astronomical Journal, 2017, 154, 117.	4.7	51
63	Wide-band profile domain pulsar timing analysis. Monthly Notices of the Royal Astronomical Society, 2017, 466, 3706-3727.	4.4	18
64	A Radio Relic and a Search for the Central Black Hole in the Abell 2261 Brightest Cluster Galaxy. Astrophysical Journal, 2017, 849, 59.	4.5	10
65	FRB 121102 Is Coincident with a Star-forming Region in Its Host Galaxy. Astrophysical Journal Letters, 2017, 843, L8.	8.3	130
66	What if the Fast Radio Bursts 110220 and 140514 Are from the Same Source?. Astrophysical Journal Letters, 2017, 841, L30.	8.3	15
67	The International Pulsar Timing Array: First data release. Monthly Notices of the Royal Astronomical Society, 2016, 458, 1267-1288.	4.4	332
68	THE NANOGRAV NINE-YEAR DATA SET: LIMITS ON THE ISOTROPIC STOCHASTIC GRAVITATIONAL WAVE BACKGROUND. Astrophysical Journal, 2016, 821, 13.	4.5	227
69	LIMITS ON FAST RADIO BURSTS FROM FOUR YEARS OF THE V-FASTR EXPERIMENT. Astrophysical Journal, 2016, 826, 223.	4.5	20
70	CONSTRAINTS ON BLACK HOLE/HOST GALAXY CO-EVOLUTION AND BINARY STALLING USING PULSAR TIMING ARRAYS. Astrophysical Journal, 2016, 826, 11.	4.5	35
71	Gravitational-Wave Cosmology across 29 Decades in Frequency. Physical Review X, 2016, 6, .	8.9	113
72	The magnetic field and turbulence of the cosmic web measured using a brilliant fast radio burst. Science, 2016, 354, 1249-1252.	12.6	167

#	Article	IF	CITATIONS
73	Timing analysis for 20 millisecond pulsars in the Parkes Pulsar Timing Array. Monthly Notices of the Royal Astronomical Society, 2016, 455, 1751-1769.	4.4	233
74	Five new fast radio bursts from the HTRU high-latitude survey at Parkes: first evidence for two-component bursts. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 460, L30-L34.	3.3	222
75	Versatile directional searches for gravitational waves with Pulsar Timing Arrays. Monthly Notices of the Royal Astronomical Society, 2016, 455, 3662-3673.	4.4	17
76	From spin noise to systematics: stochastic processes in the first International Pulsar Timing Array data release. Monthly Notices of the Royal Astronomical Society, 2016, 458, 2161-2187.	4.4	82
77	The host galaxy of a fast radio burst. Nature, 2016, 530, 453-456.	27.8	241
78	NANOGrav CONSTRAINTS ON GRAVITATIONAL WAVE BURSTS WITH MEMORY. Astrophysical Journal, 2015, 810, 150.	4.5	54
79	A survey of FRB fields: limits on repeatability. Monthly Notices of the Royal Astronomical Society, 2015, 454, 457-462.	4.4	71
80	The High Time Resolution Universe Pulsar Survey – XII. Galactic plane acceleration search and the discovery of 60 pulsars. Monthly Notices of the Royal Astronomical Society, 2015, 450, 2922-2947.	4.4	58
81	The Gravitational Wave Symphony of Structure Formation: Overview. Proceedings of the International Astronomical Union, 2015, 11, 283-284.	0.0	0
82	THE NANOGRAV NINE-YEAR DATA SET: OBSERVATIONS, ARRIVAL TIME MEASUREMENTS, AND ANALYSIS OF 37 MILLISECOND PULSARS. Astrophysical Journal, 2015, 813, 65.	4.5	185
83	A real-time fast radio burst: polarization detection and multiwavelength follow-up. Monthly Notices of the Royal Astronomical Society, 2015, 447, 246-255.	4.4	236
84	The High Time Resolution Universe survey – XI. Discovery of five recycled pulsars and the optical detectability of survey white dwarf companions. Monthly Notices of the Royal Astronomical Society, 2015, 446, 4019-4028.	4.4	25
85	A MILLISECOND INTERFEROMETRIC SEARCH FOR FAST RADIO BURSTS WITH THE VERY LARGE ARRAY. Astrophysical Journal, 2015, 807, 16.	4.5	54
86	Gravitational waves from binary supermassive black holes missing in pulsar observations. Science, 2015, 349, 1522-1525.	12.6	386
87	A study of multifrequency polarization pulse profiles of millisecond pulsars. Monthly Notices of the Royal Astronomical Society, 2015, 449, 3223-3262.	4.4	109
88	PULSAR OBSERVATIONS OF EXTREME SCATTERING EVENTS. Astrophysical Journal, 2015, 808, 113.	4.5	75
89	Identifying the source of perytons at the Parkes radio telescope. Monthly Notices of the Royal Astronomical Society, 2015, 451, 3933-3940.	4.4	70
90	Searching for gravitational wave memory bursts with the Parkes Pulsar Timing Array. Monthly Notices of the Royal Astronomical Society, 2015, 446, 1657-1671.	4.4	79

SARAH BURKE-SPOLAOR

#	Article	IF	CITATIONS
91	An all-sky search for continuous gravitational waves in the Parkes Pulsar Timing Array data set. Monthly Notices of the Royal Astronomical Society, 2014, 444, 3709-3720.	4.4	98
92	Limitations in timing precision due to single-pulse shape variability in millisecond pulsars. Monthly Notices of the Royal Astronomical Society, 2014, 443, 1463-1481.	4.4	94
93	The gravitational-wave discovery space of pulsar timing arrays. Physical Review D, 2014, 89, .	4.7	17
94	The High Time Resolution Universe pulsar survey - X. Discovery of four millisecond pulsars and updated timing solutions of a further 12. Monthly Notices of the Royal Astronomical Society, 2014, 439, 1865-1883.	4.4	50
95	AN ABSENCE OF FAST RADIO BURSTS AT INTERMEDIATE GALACTIC LATITUDES. Astrophysical Journal Letters, 2014, 789, L26.	8.3	56
96	Real-Time Adaptive Event Detection in Astronomical Data Streams. IEEE Intelligent Systems, 2014, 29, 48-55.	4.0	3
97	GRAVITATIONAL WAVES FROM INDIVIDUAL SUPERMASSIVE BLACK HOLE BINARIES IN CIRCULAR ORBITS: LIMITS FROM THE NORTH AMERICAN NANOHERTZ OBSERVATORY FOR GRAVITATIONAL WAVES. Astrophysical Journal, 2014, 794, 141.	4.5	104
98	THE GALACTIC POSITION DEPENDENCE OF FAST RADIO BURSTS AND THE DISCOVERY OF FRB011025. Astrophysical Journal, 2014, 792, 19.	4.5	140
99	A Population of Fast Radio Bursts at Cosmological Distances. Science, 2013, 341, 53-56.	12.6	803
100	A FRAMEWORK FOR INTERPRETING FAST RADIO TRANSIENTS SEARCH EXPERIMENTS: APPLICATION TO THE V-FASTR EXPERIMENT. Astrophysical Journal, 2013, 767, 4.	4.5	12
101	Measurement and correction of variations in interstellar dispersion in high-precision pulsar timing. Monthly Notices of the Royal Astronomical Society, 2013, 429, 2161-2174.	4.4	174
102	The High Time Resolution Universe survey – IX. Polarimetry of long-period pulsars. Monthly Notices of the Royal Astronomical Society, 2013, 436, 3557-3572.	4.4	16
103	The High Time Resolution Universe Pulsar Survey –VIII. The Galactic millisecond pulsar population. Monthly Notices of the Royal Astronomical Society, 2013, 434, 1387-1397.	4.4	64
104	LIMITS ON THE STOCHASTIC GRAVITATIONAL WAVE BACKGROUND FROM THE NORTH AMERICAN NANOHERTZ OBSERVATORY FOR GRAVITATIONAL WAVES. Astrophysical Journal, 2013, 762, 94.	4.5	270
105	Multi-messenger approaches to binary supermassive black holes in the â€~continuous-wave' regime. Classical and Quantum Gravity, 2013, 30, 224013.	4.0	28
106	The High Time Resolution Universe Pulsar Survey – VII. Discovery of five millisecond pulsars and the different luminosity properties of binary and isolated recycled pulsars. Monthly Notices of the Royal Astronomical Society, 2013, 433, 259-269.	4.4	24
107	DETECTION OF FAST TRANSIENTS WITH RADIO INTERFEROMETRIC ARRAYS. Astrophysical Journal, Supplement Series, 2013, 206, 2.	7.7	10
108	Gravitational-Wave Limits from Pulsar Timing Constrain Supermassive Black Hole Evolution. Science, 2013, 342, 334-337.	12.6	133

SARAH BURKE-SPOLAOR

#	Article	IF	CITATIONS
109	Rotating Radio Transients and their place among pulsars. Proceedings of the International Astronomical Union, 2012, 8, 95-100.	0.0	4
110	Science at Very High Angular Resolution with the Square Kilometre Array. Publications of the Astronomical Society of Australia, 2012, 29, 42-53.	3.4	29
111	PERIODIC STRUCTURE IN THE MEGAPARSEC-SCALE JET OF PKS 0637–752. Astrophysical Journal Letters, 2012, 758, L27.	8.3	34
112	Development of a pulsar-based time-scale. Monthly Notices of the Royal Astronomical Society, 2012, 427, 2780-2787.	4.4	163
113	The High Time Resolution Universe Pulsar Survey — VI. An artificial neural network and timing of 75 pulsars. Monthly Notices of the Royal Astronomical Society, 2012, 427, 1052-1065.	4.4	69
114	MULTI-WAVELENGTH OBSERVATIONS OF THE RADIO MAGNETAR PSR J1622–4950 AND DISCOVERY OF ITS POSSIBLY ASSOCIATED SUPERNOVA REMNANT. Astrophysical Journal, 2012, 751, 53.	4.5	53
115	The High Time Resolution Universe Pulsar Survey - IV. Discovery and polarimetry of millisecond pulsars. Monthly Notices of the Royal Astronomical Society, 2012, 419, 1752-1765.	4.4	43
116	Enhanced pulsar and single pulse detection via automated radio frequency interference detection in multipixel feeds. Monthly Notices of the Royal Astronomical Society, 2012, 420, 271-278.	4.4	34
117	Radio emission evolution, polarimetry and multifrequency single pulse analysis of the radio magnetar PSR J1622â^'4950. Monthly Notices of the Royal Astronomical Society, 2012, 422, 2489-2500.	4.4	79
118	The High Time Resolution Universe Pulsar Survey - V. Single-pulse energetics and modulation properties of 315 pulsars. Monthly Notices of the Royal Astronomical Society, 2012, 423, 1351-1367.	4.4	77
119	The discovery of terrestrial, swept-frequency emission that mimics an interstellar dispersive delay. , 2011, , .		0
120	RADIO BURSTS WITH EXTRAGALACTIC SPECTRAL CHARACTERISTICS SHOW TERRESTRIAL ORIGINS. Astrophysical Journal, 2011, 727, 18.	4.5	102
121	A radio Census of binary supermassive black holes. Monthly Notices of the Royal Astronomical Society, 2011, 410, 2113-2122.	4.4	95
122	The Australia Telescope 20 GHz (AT20G) Survey: analysis of the extragalactic source sample. Monthly Notices of the Royal Astronomical Society, 2011, 412, 318-330.	4.4	76
123	On detection of the stochastic gravitational-wave background using the Parkes pulsar timing array. Monthly Notices of the Royal Astronomical Society, 2011, 414, 1777-1787.	4.4	54
124	The High Time Resolution Universe Pulsar Survey - III. Single-pulse searches and preliminary analysis. Monthly Notices of the Royal Astronomical Society, 2011, 416, 2465-2476.	4.4	73
125	Polarization observations of 20 millisecond pulsars. Monthly Notices of the Royal Astronomical Society, 2011, 414, 2087-2100.	4.4	69
126	The High Time Resolution Universe Pulsar Survey - II. Discovery of five millisecond pulsars. Monthly Notices of the Royal Astronomical Society, 2011, 416, 2455-2464.	4.4	41

#	Article	IF	CITATIONS
127	Rotation measure variations for 20 millisecond pulsars. Astrophysics and Space Science, 2011, 335, 485-498.	1.4	16
128	Measuring the mass of solar system planets using pulsar timing. , 2011, , .		0
129	Atmospheric interpretation of anomalous terrestrial emission serendipitously discovered in radioastronomy data at 1 Gigahertz. , 2011, , .		0
130	Transformation of a Star into a Planet in a Millisecond Pulsar Binary. Science, 2011, 333, 1717-1720.	12.6	152
131	The High Time Resolution Universe: The latest survey for pulsars at Parkes. , 2011, , .		0
132	The Discovery of 5 Millisecond Pulsars in the High Time Resolution Universe Survey. , 2011, , .		1
133	The Radio-loud Magnetar PSR J1622â~'4950. , 2011, , .		0
134	A RADIO-LOUD MAGNETAR IN X-RAY QUIESCENCE. Astrophysical Journal Letters, 2010, 721, L33-L37.	8.3	153
135	MEASURING THE MASS OF SOLAR SYSTEM PLANETS USING PULSAR TIMING. Astrophysical Journal Letters, 2010, 720, L201-L205.	8.3	112
136	The High Time Resolution Universe Pulsar Survey - I. System configuration and initial discoveries. Monthly Notices of the Royal Astronomical Society, 2010, 409, 619-627.	4.4	281
137	The millisecond radio sky: transients from a blind single-pulse search. Monthly Notices of the Royal Astronomical Society, 2010, 402, 855-866.	4.4	90
138	The Australia Telescope 20 GHz Survey: the source catalogue. Monthly Notices of the Royal Astronomical Society, 2010, 402, 2403-2423.	4.4	298
139	The sensitivity of the Parkes Pulsar Timing Array to individual sources of gravitational waves. Monthly Notices of the Royal Astronomical Society, 2010, 407, 669-680.	4.4	89
140	The International Pulsar Timing Array project: using pulsars as a gravitational wave detector. Classical and Quantum Gravity, 2010, 27, 084013.	4.0	494
141	Status update of the Parkes pulsar timing array. Classical and Quantum Gravity, 2010, 27, 084015.	4.0	26
142	Timing stability of millisecond pulsars and prospects for gravitational-wave detection. Monthly Notices of the Royal Astronomical Society, 2009, 400, 951-968.	4.4	178
143	Wide-field imaging and polarimetry for the biggest and brightest in the 20-GHz southern sky. Monthly Notices of the Royal Astronomical Society, 2009, 395, 504-517.	4.4	19
144	Gravitational-Wave Detection Using Pulsars: Status of the Parkes Pulsar Timing Array Project. Publications of the Astronomical Society of Australia, 2009, 26, 103-109.	3.4	79

#	Article	IF	CITATIONS
145	The PULSE@Parkes Project: a New Observing Technique for Long-Term Pulsar Monitoring. Publications of the Astronomical Society of Australia, 2009, 26, 468-475.	3.4	21
146	A polarized fast radio burst at low Galactic latitude. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	45
147	A fast radio burst with a low dispersion measure. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	18