Sun Ying

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9121320/publications.pdf Version: 2024-02-01

SUN VINC

#	Article	IF	CITATIONS
1	Thymic Stromal Lymphopoietin Expression Is Increased in Asthmatic Airways and Correlates with Expression of Th2-Attracting Chemokines and Disease Severity. Journal of Immunology, 2005, 174, 8183-8190.	0.8	759
2	IL-33 Amplifies the Polarization of Alternatively Activated Macrophages That Contribute to Airway Inflammation. Journal of Immunology, 2009, 183, 6469-6477.	0.8	636
3	IL-25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC–activated Th2 memory cells. Journal of Experimental Medicine, 2007, 204, 1837-1847.	8.5	581
4	Expression and Cellular Provenance of Thymic Stromal Lymphopoietin and Chemokines in Patients with Severe Asthma and Chronic Obstructive Pulmonary Disease. Journal of Immunology, 2008, 181, 2790-2798.	0.8	339
5	Allergen-induced expression of IL-25 and IL-25 receptor in atopic asthmatic airways and late-phase cutaneous responses. Journal of Allergy and Clinical Immunology, 2011, 128, 116-124.	2.9	166
6	T-helper cell type 2 (Th2) memory T cell-potentiating cytokine IL-25 has the potential to promote angiogenesis in asthma. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1579-1584.	7.1	127
7	Elevated Expression of IL-33 and TSLP in the Airways of Human Asthmatics In Vivo: A Potential Biomarker of Severe Refractory Disease. Journal of Immunology, 2018, 200, 2253-2262.	0.8	122
8	Aspirin-sensitive rhinosinusitis is associated with reduced E-prostanoid 2 receptor expression on nasal mucosal inflammatory cells. Journal of Allergy and Clinical Immunology, 2006, 117, 312-318.	2.9	107
9	Bronchial Allergen Challenge of Patients with Atopic Asthma Triggers an Alarmin (IL-33, TSLP, and IL-25) Response in the Airways Epithelium and Submucosa. Journal of Immunology, 2018, 201, 2221-2231.	0.8	101
10	Expression of the cysteinyl leukotriene receptors cysLT1 and cysLT2 in aspirin-sensitive and aspirin-tolerant chronic rhinosinusitis. Journal of Allergy and Clinical Immunology, 2005, 115, 316-322.	2.9	99
11	Lack of filaggrin expression in the human bronchial mucosa. Journal of Allergy and Clinical Immunology, 2006, 118, 1386-1388.	2.9	96
12	Analysis of a Panel of 48 Cytokines in BAL Fluids Specifically Identifies IL-8 Levels as the Only Cytokine that Distinguishes Controlled Asthma from Uncontrolled Asthma, and Correlates Inversely with FEV1. PLoS ONE, 2015, 10, e0126035.	2.5	82
13	IL-25/IL-33–responsive TH2 cells characterize nasal polyps with a default TH17 signature in nasal mucosa. Journal of Allergy and Clinical Immunology, 2016, 137, 1514-1524.	2.9	78
14	Systemic glucocorticoid reduces bronchial mucosal activation of activator protein 1 components in glucocorticoid-sensitive but not glucocorticoid-resistant asthmatic patients. Journal of Allergy and Clinical Immunology, 2006, 118, 368-375.	2.9	76
15	Omalizumab reduces bronchial mucosal IgE and improves lung function in non-atopic asthma. European Respiratory Journal, 2016, 48, 1593-1601.	6.7	58
16	Kinetics of the accumulation of group 2 innate lymphoid cells in IL-33-induced and IL-25-induced murine models of asthma: a potential role for the chemokine CXCL16. Cellular and Molecular Immunology, 2019, 16, 75-86.	10.5	54
17	"Auto-anti-IgE― Naturally occurring IgG anti-IgE antibodies may inhibit allergen-induced basophil activation. Journal of Allergy and Clinical Immunology, 2014, 134, 1394-1401.e4.	2.9	49
18	Reduced expression of the prostaglandin E2 receptor E-prostanoid 2 on bronchial mucosal leukocytes in patients with aspirin-sensitive asthma. Journal of Allergy and Clinical Immunology, 2012, 129, 1636-1646.	2.9	47

Sun Ying

#	Article	IF	CITATIONS
19	Chinese Society of Allergy and Chinese Society of Otorhinolaryngology-Head and Neck Surgery Guideline for Chronic Rhinosinusitis. Allergy, Asthma and Immunology Research, 2020, 12, 176.	2.9	42
20	Intradermal grass pollen immunotherapy increases T H 2 and IgE responses and worsens respiratory allergic symptoms. Journal of Allergy and Clinical Immunology, 2017, 139, 1830-1839.e13.	2.9	35
21	Nasal administration of interleukinâ€33 induces airways angiogenesis and expression of multiple angiogenic factors in a murine asthma surrogate. Immunology, 2016, 148, 83-91.	4.4	31
22	Characteristics of Proinflammatory Cytokines and Chemokines in Airways of Asthmatics. Chinese Medical Journal, 2017, 130, 2033-2040.	2.3	30
23	The Role of Thymic Stromal Lymphopoietin in Allergic Inflammation and Chronic Obstructive Pulmonary Disease. Archivum Immunologiae Et Therapiae Experimentalis, 2010, 58, 81-90.	2.3	26
24	Combined blockade of ILâ€⊋5, ILâ€33 and TSLP mediates amplified inhibition of airway inflammation and remodelling in a murine model of asthma. Respirology, 2020, 25, 603-612.	2.3	25
25	Distinct sustained structural and functional effects of interleukinâ€33 and interleukinâ€25 on the airways in a murine asthma surrogate. Immunology, 2015, 145, 508-518.	4.4	24
26	IL-25 induces airways angiogenesis and expression of multiple angiogenic factors in a murine asthma model. Respiratory Research, 2015, 16, 39.	3.6	24
27	The effects of interleukinâ€33 on airways collagen deposition and matrix metalloproteinase expression in a murine surrogate of asthma. Immunology, 2018, 154, 637-650.	4.4	22
28	Airway Epithelium in Atopic and Nonatopic Asthma: Similarities and Differences. ISRN Allergy, 2011, 2011, 1-7.	3.1	21
29	How much do we know about atopic asthma: where are we now?. Cellular and Molecular Immunology, 2006, 3, 321-32.	10.5	19
30	Expression of prostaglandin E2 receptor subtypes on cells in sputum from patients with asthma and controls: Effect of allergen inhalational challenge. Journal of Allergy and Clinical Immunology, 2004, 114, 1309-1316.	2.9	17
31	A Potential Role of Group 2 Innate Lymphoid Cells in Eosinophilic Chronic Rhinosinusitis With Nasal Polyps. Allergy, Asthma and Immunology Research, 2021, 13, 363.	2.9	13
32	Immune analysis of expression of IL-17 relative ligands and their receptors in bladder cancer: comparison with polyp and cystitis. BMC Immunology, 2016, 17, 36.	2.2	10
33	Current State of Monoclonal Antibody Therapy for Allergic Diseases. Engineering, 2021, 7, 1552-1552.	6.7	9
34	IL-33 induced airways inflammation is partially dependent on IL-9. Cellular Immunology, 2020, 352, 104098.	3.0	8
35	Early-life infection of the airways with Streptococcus pneumoniae exacerbates HDM-induced asthma in a murine model. Cellular Immunology, 2022, 376, 104536.	3.0	5
36	Repeated exposure to inactivated Streptococcus pneumoniae induces asthma-like pathological changes in mice in the presence of IL-33. Cellular Immunology, 2021, 369, 104438.	3.0	4

Sun Ying

#	Article	IF	CITATIONS
37	Similarities and differences in the effects of sensitisation and challenge with Dermatophagoides farinae and Dermatophagoides pteronyssinus extracts in a murine asthma surrogate. Cellular Immunology, 2020, 348, 104038.	3.0	3
38	IL-33 amplifies airways inflammation in a murine surrogate of asthma possibly through acting on dendritic cells. Cellular Immunology, 2021, 366, 104395.	3.0	1
39	ldentifying and testing potential new anti-asthma agents. Expert Opinion on Drug Discovery, 2011, 6, 1027-1044.	5.0	0