So-ichiro Fukada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9120963/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nature Cell Biology, 2010, 12, 143-152.	10.3	1,013
2	Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle. Journal of Cell Science, 2011, 124, 3654-3664.	2.0	517
3	Molecular Signature of Quiescent Satellite Cells in Adult Skeletal Muscle. Stem Cells, 2007, 25, 2448-2459.	3.2	402
4	Identification and characterization of PDGFRα+ mesenchymal progenitors in human skeletal muscle. Cell Death and Disease, 2014, 5, e1186-e1186.	6.3	241
5	Reciprocal signalling by Notch–Collagen V–CALCR retains muscle stem cells in their niche. Nature, 2018, 557, 714-718.	27.8	203
6	Suppression of macrophage functions impairs skeletal muscle regeneration with severe fibrosis. Experimental Cell Research, 2008, 314, 3232-3244.	2.6	183
7	Purification and cell-surface marker characterization of quiescent satellite cells from murine skeletal muscle by a novel monoclonal antibody. Experimental Cell Research, 2004, 296, 245-255.	2.6	179
8	Generation of skeletal muscle stem/progenitor cells from murine induced pluripotent stem cells. FASEB Journal, 2010, 24, 2245-2253.	0.5	162
9	NO production results in suspension-induced muscle atrophy through dislocation of neuronal NOS. Journal of Clinical Investigation, 2007, 117, 2468-2476.	8.2	157
10	Genetic Background Affects Properties of Satellite Cells and mdx Phenotypes. American Journal of Pathology, 2010, 176, 2414-2424.	3.8	154
11	Modified forelimb grip strength test detects aging-associated physiological decline in skeletal muscle function in male mice. Scientific Reports, 2017, 7, 42323.	3.3	144
12	Muscle regeneration by reconstitution with bone marrow or fetal liver cells from green fluorescent protein-gene transgenic mice. Journal of Cell Science, 2002, 115, 1285-1293.	2.0	127
13	Hesr1 and Hesr3 are essential to generate undifferentiated quiescent satellite cells and to maintain satellite cell numbers. Development (Cambridge), 2011, 138, 4609-4619.	2.5	125
14	Hypertension and dysregulated proinflammatory cytokine production in receptor activity-modifying protein 1-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16702-16707.	7.1	117
15	Functional heterogeneity of side population cells in skeletal muscle. Biochemical and Biophysical Research Communications, 2006, 341, 864-873.	2.1	110
16	Calcitonin Gene-Related Peptide Is an Important Regulator of Cutaneous Immunity: Effect on Dendritic Cell and T Cell Functions. Journal of Immunology, 2011, 186, 6886-6893.	0.8	110
17	Muscle regeneration by reconstitution with bone marrow or fetal liver cells from green fluorescent protein-gene transgenic mice. Journal of Cell Science, 2002, 115, 1285-93.	2.0	100
18	Cell-Surface Protein Profiling Identifies Distinctive Markers of Progenitor Cells in Human Skeletal Muscle. Stem Cell Reports, 2016, 7, 263-278.	4.8	95

#	Article	IF	CITATIONS
19	Fibrogenic Cell Plasticity Blunts Tissue Regeneration and Aggravates Muscular Dystrophy. Stem Cell Reports, 2015, 4, 1046-1060.	4.8	91
20	Calcitonin Receptor Signaling Inhibits Muscle Stem Cells from Escaping the Quiescent State and the Niche. Cell Reports, 2015, 13, 302-314.	6.4	88
21	Autologous Transplantation of SM/C-2.6+ Satellite Cells Transduced with Micro-dystrophin CS1 cDNA by Lentiviral Vector into mdx Mice. Molecular Therapy, 2007, 15, 2178-2185.	8.2	82
22	Generation of transplantable, functional satelliteâ€like cells from mouse embryonic stem cells. FASEB Journal, 2009, 23, 1907-1919.	0.5	81
23	Muscle CD31(â^') CD45(â^') Side Population Cells Promote Muscle Regeneration by Stimulating Proliferation and Migration of Myoblasts. American Journal of Pathology, 2008, 173, 781-791.	3.8	75
24	Calcitonin Receptor Neurons in the Mouse Nucleus Tractus Solitarius Control Energy Balance via the Non-aversive Suppression of Feeding. Cell Metabolism, 2020, 31, 301-312.e5.	16.2	68
25	Mesenchymal Bmp3b expression maintains skeletal muscle integrity and decreases in age-related sarcopenia. Journal of Clinical Investigation, 2021, 131, .	8.2	63
26	Adiponectin promotes muscle regeneration through binding to T-cadherin. Scientific Reports, 2019, 9, 16.	3.3	60
27	The roles of muscle stem cells in muscle injury, atrophy and hypertrophy. Journal of Biochemistry, 2018, 163, 353-358.	1.7	59
28	A novel long non-coding RNA Myolinc regulates myogenesis through TDP-43 and Filip1. Journal of Molecular Cell Biology, 2018, 10, 102-117.	3.3	56
29	Imatinib attenuates severe mouse dystrophy and inhibits proliferation and fibrosis-marker expression in muscle mesenchymal progenitors. Neuromuscular Disorders, 2013, 23, 349-356.	0.6	55
30	Impaired regenerative capacity and lower revertant fibre expansion in dystrophin-deficient mdx muscles on DBA/2 background. Scientific Reports, 2016, 6, 38371.	3.3	47
31	Green fluorescent protein-transgenic mice: immune functions and their application to studies of lymphocyte development. Immunology Letters, 2000, 70, 165-171.	2.5	45
32	Calcitonin gene-related peptide enhances experimental autoimmune encephalomyelitis by promoting Th17-cell functions. International Immunology, 2012, 24, 681-691.	4.0	44
33	Current Translational Research and Murine Models For Duchenne Muscular Dystrophy. Journal of Neuromuscular Diseases, 2016, 3, 29-48.	2.6	43
34	Vestigial-like 2 contributes to normal muscle fiber type distribution in mice. Scientific Reports, 2017, 7, 7168.	3.3	42
35	Methods for Accurate Assessment of Myofiber Maturity During Skeletal Muscle Regeneration. Frontiers in Cell and Developmental Biology, 2020, 8, 267.	3.7	42
36	Impaired viability of muscle precursor cells in muscular dystrophy with glycosylation defects and amelioration of its severe phenotype by limited gene expression. Human Molecular Genetics, 2013, 22, 3003-3015.	2.9	40

#	Article	IF	CITATIONS
37	Sustained expression of HeyL is critical for the proliferation of muscle stem cells in overloaded muscle. ELife, 2019, 8, .	6.0	40
38	The CalcR-PKA-Yap1 Axis Is Critical for Maintaining Quiescence in Muscle Stem Cells. Cell Reports, 2019, 29, 2154-2163.e5.	6.4	38
39	Calcitonin Gene-Related Peptide and Cyclic Adenosine 5′-Monophosphate/Protein Kinase A Pathway Promote IL-9 Production in Th9 Differentiation Process. Journal of Immunology, 2013, 190, 4046-4055.	0.8	37
40	Adult stem cell and mesenchymal progenitor theories of aging. Frontiers in Cell and Developmental Biology, 2014, 2, 10.	3.7	37
41	Angiotensinâ€converting enzyme 2 deficiency accelerates and angiotensin 1â€7 restores ageâ€related muscle weakness in mice. Journal of Cachexia, Sarcopenia and Muscle, 2018, 9, 975-986.	7.3	37
42	Role of damage and management in muscle hypertrophy: Different behaviors of muscle stem cells in regeneration and hypertrophy. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118742.	4.1	37
43	Muscle regeneration is disrupted by cancer cachexia without loss of muscle stem cell potential. PLoS ONE, 2018, 13, e0205467.	2.5	36
44	Relayed signaling between mesenchymal progenitors and muscle stem cells ensures adaptive stem cell response to increased mechanical load. Cell Stem Cell, 2022, 29, 265-280.e6.	11.1	36
45	Isolation, characterization, and molecular regulation of muscle stem cells. Frontiers in Physiology, 2013, 4, 317.	2.8	35
46	Cell-autonomous and redundant roles of Hey1 and HeyL in muscle stem cells: HeyL requires Hes1 to bind diverse DNA sites. Development (Cambridge), 2019, 146, .	2.5	34
47	Calcitonin Gene-Related Peptide Regulates Type IV Hypersensitivity through Dendritic Cell Functions. PLoS ONE, 2014, 9, e86367.	2.5	32
48	Notch ligands regulate the muscle stem-like state ex vivo but are not sufficient for retaining regenerative capacity. PLoS ONE, 2017, 12, e0177516.	2.5	30
49	Generation of induced pluripotent stem (iPS) cells derived from a murine model of Pompe disease and differentiation of Pompe-iPS cells into skeletal muscle cells. Molecular Genetics and Metabolism, 2011, 104, 123-128.	1.1	29
50	Doublecortin marks a new population of transiently amplifying muscle progenitor cells and is required for myofiber maturation during skeletal muscle regeneration. Development (Cambridge), 2015, 142, 51-61.	2.5	29
51	Adult murine cardiomyocytes exhibit regenerative activity with cell cycle reentry through STAT3 in the healing process of myocarditis. Scientific Reports, 2017, 7, 1407.	3.3	29
52	Muscle injury-induced thymosin Â4 acts as a chemoattractant for myoblasts. Journal of Biochemistry, 2011, 149, 43-48.	1.7	25
53	Myofiber androgen receptor increases muscle strength mediated by a skeletal muscle splicing variant of Mylk4. IScience, 2021, 24, 102303.	4.1	24
54	Interaction of merosin (laminin 2) with very late activation antigen-6 is necessary for the survival of CD4+ CD8+ immature thymocytes. Immunology, 2000, 99, 481-488.	4.4	23

#	Article	IF	CITATIONS
55	CD90-positive cells, an additional cell population, produce laminin α2 upon transplantation to dy/dy mice. Experimental Cell Research, 2008, 314, 193-203.	2.6	23
56	The Ror1 receptor tyrosine kinase plays a critical role in regulating satellite cell proliferation during regeneration of injured muscle. Journal of Biological Chemistry, 2017, 292, 15939-15951.	3.4	23
57	Pro-Insulin-Like Growth Factor-II Ameliorates Age-Related Inefficient Regenerative Response by Orchestrating Self-Reinforcement Mechanism of Muscle Regeneration. Stem Cells, 2015, 33, 2456-2468.	3.2	22
58	Calcitonin receptor and Odz4 are differently expressed in Pax7-positive cells during skeletal muscle regeneration. Journal of Molecular Histology, 2012, 43, 581-587.	2.2	20
59	Differences in muscle satellite cell dynamics during muscle hypertrophy and regeneration. Skeletal Muscle, 2022, 12, .	4.2	20
60	Regulation of Lck and Fyn tyrosine kinase activities by transmembrane protein tyrosine phosphatase leukocyte common antigen-related molecule. Molecular Cancer Research, 2002, 1, 155-63.	3.4	19
61	Multiple ETS Family Proteins Regulate PF4 Gene Expression by Binding to the Same ETS Binding Site. PLoS ONE, 2011, 6, e24837.	2.5	14
62	Neuronal Derivative Mediators That Regulate Cutaneous Inflammations. Critical Reviews in Immunology, 2012, 32, 307-320.	0.5	13
63	Muscle Satellite Cell Protein Teneurin-4 Regulates Differentiation During Muscle Regeneration. Stem Cells, 2015, 33, 3017-3027.	3.2	13
64	The Robo4-TRAF7 complex suppresses endothelial hyperpermeability in inflammation. Journal of Cell Science, 2019, 132, .	2.0	13
65	Evidence of Notch-Hesr-Nrf2 Axis in Muscle Stem Cells, but Absence of Nrf2 Has No Effect on Their Quiescent and Undifferentiated State. PLoS ONE, 2015, 10, e0138517.	2.5	11
66	Expression and Functional Analyses of Dlk1 in Muscle Stem Cells and Mesenchymal Progenitors during Muscle Regeneration. International Journal of Molecular Sciences, 2019, 20, 3269.	4.1	11
67	Myogenic induction of adult and pluripotent stem cells using recombinant proteins. Biochemical and Biophysical Research Communications, 2015, 464, 755-761.	2.1	10
68	Implication of basal lamina dependency in survival of Nrf2-null muscle stem cells via an antioxidative-independent mechanism. Journal of Cellular Physiology, 2019, 234, 1689-1698.	4.1	10
69	Regulation of muscle hypertrophy: Involvement of the Akt-independent pathway and satellite cells in muscle hypertrophy. Experimental Cell Research, 2021, 409, 112907.	2.6	10
70	Suppression of ovalbumin-induced allergic diarrhea by diminished intestinal peristalsis in RAMP1-deficient mice. Biochemical and Biophysical Research Communications, 2011, 410, 389-393.	2.1	8
71	<i>Gm7325</i> is MyoD-dependently expressed in activated muscle satellite cells . Biomedical Research, 2017, 38, 215-219.	0.9	8
72	DNA maintenance methylation enzyme Dnmt1 in satellite cells is essential for muscle regeneration. Biochemical and Biophysical Research Communications, 2021, 534, 79-85.	2.1	8

#	Article	IF	CITATIONS
73	Critical role of Frizzled1 in ageâ€related alterations of Wnt/βâ€catenin signal in myogenic cells during differentiation. Genes To Cells, 2014, 19, 287-296.	1.2	7
74	An herbal medicine, Go-sha-jinki-gan (GJG), increases muscle weight in severe muscle dystrophy model mice. Clinical Nutrition Experimental, 2017, 16, 13-23.	2.0	7
75	Exercise/Resistance Training and Muscle Stem Cells. Endocrinology and Metabolism, 2021, 36, 737-744.	3.0	7
76	Dlk1 regulates quiescence in calcitonin receptor-mutant muscle stem cells. Stem Cells, 2021, 39, 306-317.	3.2	5
77	Expression of mdr1 is required for efficient long term regeneration of dystrophic muscle. Experimental Cell Research, 2007, 313, 2438-2450.	2.6	4
78	Reduced expression of calcitonin receptor is closely associated with ageâ€related loss of the muscle stem cell pool. JCSM Rapid Communications, 2019, 2, 1-13.	1.6	4
79	Uhrf1 governs the proliferation and differentiation of muscle satellite cells. IScience, 2022, 25, 103928.	4.1	4
80	Androgen receptor in satellite cells is not essential for muscle regenerations. Experimental Results, 2020, 1, .	0.6	3
81	Implication of satellite cell behaviors in capillary growth via VEGF expression-independent mechanism in response to mechanical loading in HeyL-null mice. American Journal of Physiology - Cell Physiology, 2022, 322, C275-C282.	4.6	3
82	Regulation of Muscle Stem Cell Quiescent and Undifferentiated State: Roles of Hesr1 and Hesr3 Genes. , 2013, , 107-116.		2
83	Muscle Satellite Cells and Duchenne Muscular Dystrophy. , 2012, , .		1
84	Detection of muscle stem cell-derived myonuclei in murine overloaded muscles. STAR Protocols, 2022, 3, 101307.	1.2	1
85	G.P.5 06 Dislocated neuronal nitric oxide synthase results in muscle atrophy during tail suspension. Neuromuscular Disorders, 2006, 16, 692-693.	0.6	0
86	36. Transplantation of SM/C-2.6+ Satellite Cells Transduced with Micro-Dystrophin CS1 cDNA by Lentiviral Vector into mdx Mice. Molecular Therapy, 2006, 13, S15.	8.2	0
87	P74. Age-related changes in prospectively isolated muscle satellite cells. Differentiation, 2010, 80, S41-S42.	1.9	0
88	Toward Regenerative Medicine for Muscular Dystrophies. , 2016, , 103-122.		0
89	Gm7325 Transcription Is Regulated by MyoD in Activated Muscle Satellite Cells. Biophysical Journal, 2018, 114, 628a.	0.5	0