T C Sum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9119924/publications.pdf Version: 2024-02-01

T C SUM

#	Article	IF	CITATIONS
1	Spotlight on Hot Carriers in Halide Perovskite Luminescence. ACS Energy Letters, 2022, 7, 749-756.	8.8	13
2	Tailoring the EnergyÂManifold of Quasiâ€Twoâ€Dimensional Perovskites for Efficient Carrier Extraction. Advanced Energy Materials, 2022, 12, .	10.2	15
3	Grainâ€Boundariesâ€Engineering via Laser Manufactured Laâ€Doped BaSnO ₃ Nanocrystals with Tailored Surface States Enabling Perovskite Solar Cells with Efficiency of 23.74%. Advanced Functional Materials, 2022, 32, 2112388.	7.8	16
4	Carrier, Spin, and Phonon Dynamics in Hybrid Organic–Inorganic Perovskites. , 2022, , 137-206.		0
5	Defect Passivation Using a Phosphonic Acid Surface Modifier for Efficient RP Perovskite Blue-Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2022, 14, 34238-34246.	4.0	15
6	Water-stable Perovskite Quantum Dots-based FRET Nanosensor for the Detection of Rhodamine 6G in Water, Food, and Biological Samples. Microchemical Journal, 2022, 180, 107624.	2.3	13
7	Giant second-harmonic generation in ferroelectric NbOI2. Nature Photonics, 2022, 16, 644-650.	15.6	57
8	Efficacious symmetry-adapted atomic displacement method for lattice dynamical studies. Computer Physics Communications, 2021, 259, 107635.	3.0	3
9	The Physics of Interlayer Exciton Delocalization in Ruddlesden–Popper Lead Halide Perovskites. Nano Letters, 2021, 21, 405-413.	4.5	22
10	Strong coupling and pressure engineering in WSe2–MoSe2 heterobilayers. Nature Physics, 2021, 17, 92-98.	6.5	140
11	Composition-tuned MAPbBr3 nanoparticles with addition of Cs+ cations for improved photoluminescence. RSC Advances, 2021, 11, 24137-24143.	1.7	3
12	Room temperature synthesis of low-dimensional rubidium copper halide colloidal nanocrystals with near unity photoluminescence quantum yield. Nanoscale, 2021, 13, 59-65.	2.8	20
13	Origins of the long-range exciton diffusion in perovskite nanocrystal films: photon recycling vs exciton hopping. Light: Science and Applications, 2021, 10, 2.	7.7	66
14	Effect of alloying on the dynamics of coherent acoustic phonons in bismuth double perovskite single crystals. Optics Express, 2021, 29, 7948.	1.7	4
15	Strong self-trapping by deformation potential limits photovoltaic performance in bismuth double perovskite. Science Advances, 2021, 7, .	4.7	98
16	Electronic States Modulation by Coherent Optical Phonons in 2D Halide Perovskites. Advanced Materials, 2021, 33, e2006233.	11.1	41
17	Precise Control of CsPbBr ₃ Perovskite Nanocrystal Growth at Room Temperature: Size Tunability and Synthetic Insights. Chemistry of Materials, 2021, 33, 2387-2397.	3.2	40
18	Room Temperature Lightâ€Mediated Longâ€Range Coupling of Excitons in Perovskites. Advanced Optical Materials, 2021, 9, 2001835.	3.6	6

#	Article	IF	CITATIONS
19	The photophysics of Ruddlesden-Popper perovskites: A tale of energy, charges, and spins. Applied Physics Reviews, 2021, 8, .	5.5	34
20	Zone-Folded Longitudinal Acoustic Phonons Driving Self-Trapped State Emission in Colloidal CdSe Nanoplatelet Superlattices. Nano Letters, 2021, 21, 4137-4144.	4.5	22
21	Lowâ€Threshold Lasing from Copperâ€Doped CdSe Colloidal Quantum Wells. Laser and Photonics Reviews, 2021, 15, 2100034.	4.4	18
22	Improving Photoelectrochemical Activity of ZnO/TiO2 Core–Shell Nanostructure through Ag Nanoparticle Integration. Catalysts, 2021, 11, 911.	1.6	6
23	Water-Stable All-Inorganic Perovskite Nanocrystals with Nonlinear Optical Properties for Targeted Multiphoton Bioimaging. ACS Applied Nano Materials, 2021, 4, 9022-9033.	2.4	29
24	Pseudo-magnetic field-induced slow carrier dynamics in periodically strained graphene. Nature Communications, 2021, 12, 5087.	5.8	31
25	One-Pot Synthesis and Structural Evolution of Colloidal Cesium Lead Halide–Lead Sulfide Heterostructure Nanocrystals for Optoelectronic Applications. Journal of Physical Chemistry Letters, 2021, 12, 9569-9578.	2.1	15
26	Spacer Cation Alloying in Ruddlesden–Popper Perovskites for Efficient Red Lightâ€Emitting Diodes with Precisely Tunable Wavelengths. Advanced Materials, 2021, 33, e2104381.	11.1	41
27	Molecular design of two-dimensional perovskite cations for efficient energy cascade in perovskite light-emitting diodes. Applied Physics Letters, 2021, 119, 154101.	1.5	3
28	Additives in Halide Perovskite for Blue-Light-Emitting Diodes: Passivating Agents or Crystallization Modulators?. ACS Energy Letters, 2021, 6, 4265-4272.	8.8	24
29	Interfacial Mechanism for Efficient Resistive Switching in Ruddlesden–Popper Perovskites for Non-volatile Memories. Journal of Physical Chemistry Letters, 2020, 11, 463-470.	2.1	90
30	Inducing formation of a corrugated, white-light emitting 2D lead-bromide perovskite <i>via</i> subtle changes in templating cation. Journal of Materials Chemistry C, 2020, 8, 889-893.	2.7	40
31	White Electroluminescence from Perovskite–Organic Heterojunction. ACS Energy Letters, 2020, 5, 2690-2697.	8.8	21
32	Design of 2D Templating Molecules for Mixed-Dimensional Perovskite Light-Emitting Diodes. Chemistry of Materials, 2020, 32, 8097-8105.	3.2	24
33	Halide perovskite nanocrystals for multiphoton applications. Dalton Transactions, 2020, 49, 15149-15160.	1.6	7
34	The Bright Side and Dark Side of Hybrid Organic–Inorganic Perovskites. Journal of Physical Chemistry C, 2020, 124, 27340-27355.	1.5	3
35	Hot carriers perspective on the nature of traps in perovskites. Nature Communications, 2020, 11, 2712.	5.8	65
36	Hot Carriers in Halide Perovskites: How Hot Truly?. Journal of Physical Chemistry Letters, 2020, 11, 2743-2750.	2.1	41

#	Article	IF	CITATIONS
37	Quo vadis, perovskite emitters?. Journal of Chemical Physics, 2020, 152, 130901.	1.2	20
38	Sub-single exciton optical gain threshold in colloidal semiconductor quantum wells with gradient alloy shelling. Nature Communications, 2020, 11, 3305.	5.8	39
39	In Situ Growth of [hk1]â€Oriented Sb ₂ S ₃ for Solutionâ€Processed Planar Heterojunction Solar Cell with 6.4% Efficiency. Advanced Functional Materials, 2020, 30, 2002887.	7.8	85
40	Excitons in 2D perovskites for ultrafast terahertz photonic devices. Science Advances, 2020, 6, eaax8821.	4.7	95
41	Coupling halide perovskites with different materials: From doping to nanocomposites, beyond photovoltaics. Progress in Materials Science, 2020, 110, 100639.	16.0	38
42	Heavy Water Additive in Formamidinium: A Novel Approach to Enhance Perovskite Solar Cell Efficiency. Advanced Materials, 2020, 32, e1907864.	11.1	51
43	Targeted Synthesis of Trimeric Organic–Bromoplumbate Hybrids That Display Intrinsic, Highly Stokes-Shifted, Broadband Emission. Chemistry of Materials, 2020, 32, 4431-4441.	3.2	25
44	Highly Efficient Thermally Co-evaporated Perovskite Solar Cells and Mini-modules. Joule, 2020, 4, 1035-1053.	11.7	257
45	Designing the Perovskite Structural Landscape for Efficient Blue Emission. ACS Energy Letters, 2020, 5, 1593-1600.	8.8	71
46	Resolving Spectral Mismatch Errors for Perovskite Solar Cells in Commercial Class AAA Solar Simulators. Journal of Physical Chemistry Letters, 2020, 11, 3782-3788.	2.1	10
47	Role of Electron–Phonon Coupling in the Thermal Evolution of Bulk Rashba-Like Spin-Split Lead Halide Perovskites Exhibiting Dual-Band Photoluminescence. ACS Energy Letters, 2019, 4, 2205-2212.	8.8	58
48	Ultrafast long-range spin-funneling in solution-processed Ruddlesden–Popper halide perovskites. Nature Communications, 2019, 10, 3456.	5.8	38
49	Room temperature continuous-wave excited biexciton emission in perovskite nanoplatelets via plasmonic nonlinear fano resonance. Communications Physics, 2019, 2, .	2.0	36
50	Ultrathin Highly Luminescent Twoâ€Monolayer Colloidal CdSe Nanoplatelets. Advanced Functional Materials, 2019, 29, 1901028.	7.8	56
51	Cesium Copper Iodide Tailored Nanoplates and Nanorods for Blue, Yellow, and White Emission. Chemistry of Materials, 2019, 31, 9003-9011.	3.2	111
52	Electrically control amplified spontaneous emission in colloidal quantum dots. Science Advances, 2019, 5, eaav3140.	4.7	43
53	Highâ€Quality Ruddlesden–Popper Perovskite Films Based on In Situ Formed Organic Spacer Cations. Advanced Materials, 2019, 31, e1904243.	11.1	35
54	Ferroelectricity and Rashba Effect in a Two-Dimensional Dion-Jacobson Hybrid Organic–Inorganic Perovskite. Journal of the American Chemical Society, 2019, 141, 15972-15976.	6.6	113

#	Article	IF	CITATIONS
55	Indirect tail states formation by thermal-induced polar fluctuations in halide perovskites. Nature Communications, 2019, 10, 484.	5.8	88
56	Cation influence on carrier dynamics in perovskite solar cells. Nano Energy, 2019, 58, 604-611.	8.2	75
57	Ultrahigh-efficiency aqueous flat nanocrystals of CdSe/CdS@Cd _{1â^x} Zn _x S colloidal core/crown@alloyed-shell quantum wells. Nanoscale, 2019, 11, 301-310.	2.8	44
58	Correlation of recombination and open circuit voltage in planar heterojunction perovskite solar cells. Journal of Materials Chemistry C, 2019, 7, 1273-1279.	2.7	22
59	Completely Solvent-free Protocols to Access Phase-Pure, Metastable Metal Halide Perovskites and Functional Photodetectors from the Precursor Salts. IScience, 2019, 16, 312-325.	1.9	80
60	Role of Water in Suppressing Recombination Pathways in CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 25474-25482.	4.0	33
61	Solutionâ€Processed Lead Iodide for Ultrafast Allâ€Optical Switching of Terahertz Photonic Devices. Advanced Materials, 2019, 31, e1901455.	11.1	81
62	Stable, Highâ€5ensitivity and Fastâ€Response Photodetectors Based on Leadâ€Free Cs ₂ AgBiBr ₆ Double Perovskite Films. Advanced Optical Materials, 2019, 7, 1801732.	3.6	126
63	Upconversion amplification through dielectric superlensing modulation. Nature Communications, 2019, 10, 1391.	5.8	114
64	Simultaneously boost diffusion length and stability of perovskite for high performance solar cells. Nano Energy, 2019, 59, 721-729.	8.2	33
65	Tunable Ferroelectricity in Ruddlesden–Popper Halide Perovskites. ACS Applied Materials & Interfaces, 2019, 11, 13523-13532.	4.0	32
66	Stable Sn ²⁺ doped FAPbI ₃ nanocrystals for near-infrared LEDs. Chemical Communications, 2019, 55, 5451-5454.	2.2	21
67	Mesoporous SiO2/BiVO4/CuO nanospheres for Z-scheme, visible light aerobic C–N coupling and dehydrogenation. Applied Materials Today, 2019, 15, 192-202.	2.3	30
68	Localized Traps Limited Recombination in Lead Bromide Perovskites. Advanced Energy Materials, 2019, 9, 1803119.	10.2	28
69	Slow Hot arrier Cooling in Halide Perovskites: Prospects for Hot arrier Solar Cells. Advanced Materials, 2019, 31, e1802486.	11.1	191
70	Hot carrier extraction in CH ₃ NH ₃ PbI ₃ unveiled by pump-push-probe spectroscopy. Science Advances, 2019, 5, eaax3620.	4.7	56
71	Pressure-Engineered Structural and Optical Properties of Two-Dimensional (C ₄ H ₉ NH ₃) ₂ Pbl ₄ Perovskite Exfoliated nm-Thin Flakes. Journal of the American Chemical Society, 2019, 141, 1235-1241.	6.6	95
72	Enhanced Photovoltaic Performance and Thermal Stability of CH ₃ NH ₃ Pbl ₃ Perovskite through Lattice Symmetrization. ACS Applied Materials & Interfaces, 2019, 11, 740-746.	4.0	20

#	Article	IF	CITATIONS
73	Critical role of chloride in organic ammonium spacer on the performance of Low-dimensional Ruddlesden-Popper perovskite solar cells. Nano Energy, 2019, 56, 373-381.	8.2	59
74	Hydrophobic Metal Halide Perovskites for Visibleâ€Light Photoredox Câ^'C Bond Cleavage and Dehydrogenation Catalysis. Angewandte Chemie, 2019, 131, 3494-3498.	1.6	15
75	Hydrophobic Metal Halide Perovskites for Visibleâ€Light Photoredox Câ^'C Bond Cleavage and Dehydrogenation Catalysis. Angewandte Chemie - International Edition, 2019, 58, 3456-3460.	7.2	93
76	Low-threshold lasing from colloidal CdSe/CdSeTe core/alloyed-crown type-II heteronanoplatelets. Nanoscale, 2018, 10, 9466-9475.	2.8	43
77	Solution-Processed Cd-Substituted CZTS Photocathode for Efficient Solar Hydrogen Evolution from Neutral Water. Joule, 2018, 2, 537-548.	11.7	102
78	Limitations of Cs ₃ Bi ₂ I ₉ as Lead-Free Photovoltaic Absorber Materials. ACS Applied Materials & Interfaces, 2018, 10, 35000-35007.	4.0	133
79	Enhancing moisture tolerance in efficient hybrid 3D/2D perovskite photovoltaics. Journal of Materials Chemistry A, 2018, 6, 2122-2128.	5.2	163
80	Grain Size Modulation and Interfacial Engineering of CH ₃ NH ₃ PbBr ₃ Emitter Films through Incorporation of Tetraethylammonium Bromide. ChemPhysChem, 2018, 19, 1075-1080.	1.0	13
81	Enhanced Exciton and Photon Confinement in Ruddlesden–Popper Perovskite Microplatelets for Highly Stable Lowâ€Threshold Polarized Lasing. Advanced Materials, 2018, 30, e1707235.	11.1	101
82	Long Electron–Hole Diffusion Length in Highâ€Quality Leadâ€Free Double Perovskite Films. Advanced Materials, 2018, 30, e1706246.	11.1	242
83	Surface Rutilization of Anatase TiO2 for Efficient Electron Extraction and Stable Pmax Output of Perovskite Solar Cells. CheM, 2018, 4, 911-923.	5.8	28
84	Highâ€Pressureâ€Induced Comminution and Recrystallization of CH ₃ NH ₃ PbBr ₃ Nanocrystals as Large Thin Nanoplates. Advanced Materials, 2018, 30, 1705017.	11.1	89
85	Highâ€Performance As ast Nonfullerene Polymer Solar Cells with Thicker Active Layer and Large Area Exceeding 11% Power Conversion Efficiency. Advanced Materials, 2018, 30, 1704546.	11.1	233
86	Low threshold and efficient multiple exciton generation in halide perovskite nanocrystals. Nature Communications, 2018, 9, 4197.	5.8	110
87	Superior Performance of Silver Bismuth Iodide Photovoltaics Fabricated via Dynamic Hotâ€Casting Method under Ambient Conditions. Advanced Energy Materials, 2018, 8, 1802051.	10.2	84
88	Elucidating Surface and Bulk Emission in 3D Hybrid Organic–Inorganic Lead Bromide Perovskites. Advanced Optical Materials, 2018, 6, 1800470.	3.6	28
89	Inducing Isotropic Growth in Multidimensional Cesium Lead Halide Perovskite Nanocrystals. ChemPlusChem, 2018, 83, 514-520.	1.3	11
90	Doping and Switchable Photovoltaic Effect in Leadâ€Free Perovskites Enabled by Metal Cation Transmutation. Advanced Materials, 2018, 30, e1802080.	11.1	30

#	Article	IF	CITATIONS
91	Understanding the effect of chlorobenzene and isopropanol anti-solvent treatments on the recombination and interfacial charge accumulation in efficient planar perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 14307-14314.	5.2	94
92	Efficient recycling of trapped energies for dual-emission in Mn-doped perovskite nanocrystals. Nano Energy, 2018, 51, 704-710.	8.2	54
93	Feature issue introduction: halide perovskites for optoelectronics. Optics Express, 2018, 26, A153.	1.7	11
94	Feature issue introduction: halide perovskites for optoelectronics. Optical Materials Express, 2018, 8, 231.	1.6	2
95	Simultaneous enhancement in charge separation and onset potential for water oxidation in a BiVO ₄ photoanode by W–Ti codoping. Journal of Materials Chemistry A, 2018, 6, 16965-16974.	5.2	27
96	Molecular Engineering toward Coexistence of Dielectric and Optical Switch Behavior in Hybrid Perovskite Phase Transition Material. Journal of Physical Chemistry A, 2018, 122, 6416-6423.	1.1	25
97	Aligned and Graded Typeâ€II Ruddlesden–Popper Perovskite Films for Efficient Solar Cells. Advanced Energy Materials, 2018, 8, 1800185.	10.2	247
98	Coherent Spin and Quasiparticle Dynamics in Solutionâ€Processed Layered 2D Lead Halide Perovskites. Advanced Science, 2018, 5, 1800664.	5.6	66
99	Synergistic capacitive behavior between polyaniline and carbon black. Electrochimica Acta, 2017, 230, 236-244.	2.6	38
100	Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nature Communications, 2017, 8, 14558.	5.8	473
101	Temperature effect of the compact TiO2 layer in planar perovskite solar cells: An interfacial electrical, optical and carrier mobility study. Solar Energy Materials and Solar Cells, 2017, 163, 242-249.	3.0	36
102	Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals. Nature Communications, 2017, 8, 14350.	5.8	282
103	"Electron/Ion Sponge―Like V-Based Polyoxometalate: Toward High-Performance Cathode for Rechargeable Sodium Ion Batteries. ACS Nano, 2017, 11, 6911-6920.	7.3	95
104	Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals. Nature Communications, 2017, 8, 15198.	5.8	177
105	Perovskite as a Platform for Active Flexible Metaphotonic Devices. ACS Photonics, 2017, 4, 1595-1601.	3.2	86
106	Rapid Crystallization of All-Inorganic CsPbBr3 Perovskite for High-Brightness Light-Emitting Diodes. ACS Omega, 2017, 2, 2757-2764.	1.6	28
107	Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices. Advanced Materials, 2017, 29, 1605881.	11.1	140
108	3R MoS ₂ with Broken Inversion Symmetry: A Promising Ultrathin Nonlinear Optical Device. Advanced Materials, 2017, 29, 1701486.	11.1	197

#	Article	IF	CITATIONS
109	Facile Method to Reduce Surface Defects and Trap Densities in Perovskite Photovoltaics. ACS Applied Materials & Interfaces, 2017, 9, 21292-21297.	4.0	71
110	Morphology-Independent Stable White-Light Emission from Self-Assembled Two-Dimensional Perovskites Driven by Strong Exciton–Phonon Coupling to the Organic Framework. Chemistry of Materials, 2017, 29, 3947-3953.	3.2	200
111	Long Minorityâ€Carrier Diffusion Length and Low Surfaceâ€Recombination Velocity in Inorganic Leadâ€Free CsSnI ₃ Perovskite Crystal for Solar Cells. Advanced Functional Materials, 2017, 27, 1604818.	7.8	164
112	Chemical Vapor Deposition of Large-Size Monolayer MoSe ₂ Crystals on Molten Glass. Journal of the American Chemical Society, 2017, 139, 1073-1076.	6.6	258
113	Al ₂ O ₃ Surface Complexation for Photocatalytic Organic Transformations. Journal of the American Chemical Society, 2017, 139, 269-276.	6.6	64
114	Evolution of hydrogen by few-layered black phosphorus under visible illumination. Journal of Materials Chemistry A, 2017, 5, 24874-24879.	5.2	45
115	Wavelength Tunable Plasmonic Lasers Based on Intrinsic Self-Absorption of Gain Material. ACS Photonics, 2017, 4, 2789-2796.	3.2	30
116	High- <i>Q</i> plasmonic infrared absorber for sensing of molecular resonances in hybrid lead halide perovskites. Journal of Applied Physics, 2017, 122, .	1.1	15
117	Modulating Excitonic Recombination Effects through Oneâ€Step Synthesis of Perovskite Nanoparticles for Lightâ€Emitting Diodes. ChemSusChem, 2017, 10, 3818-3824.	3.6	12
118	Plasmonic enhanced photoelectrochemical and photocatalytic performances of 1D coaxial Ag@Ag ₂ S hybrids. Journal of Materials Chemistry A, 2017, 5, 21570-21578.	5.2	45
119	Investigating the feasibility of symmetric guanidinium based plumbate perovskites in prototype solar cell devices. Japanese Journal of Applied Physics, 2017, 56, 08MC05.	0.8	19
120	Broadbandâ€Emitting 2 D Hybrid Organic–Inorganic Perovskite Based on Cyclohexaneâ€bis(methylamonium) Cation. ChemSusChem, 2017, 10, 3765-3772.	3.6	72
121	Benzyl Alcohol-Treated CH ₃ NH ₃ PbBr ₃ Nanocrystals Exhibiting High Luminescence, Stability, and Ultralow Amplified Spontaneous Emission Thresholds. Nano Letters, 2017, 17, 7424-7432.	4.5	100
122	Twoâ€₽hoton Optical Properties in Individual Organic–Inorganic Perovskite Microplates. Advanced Optical Materials, 2017, 5, 1700809.	3.6	33
123	Hot carrier cooling mechanisms in halide perovskites. Nature Communications, 2017, 8, 1300.	5.8	347
124	New insight into the roles of oxygen vacancies in hematite for solar water splitting. Physical Chemistry Chemical Physics, 2017, 19, 1074-1082.	1.3	69
125	Plasmonic Entities within the Charge Transporting Layer. SpringerBriefs in Applied Sciences and Technology, 2017, , 47-80.	0.2	0
126	Plasmonic Entities within the Active Layer. SpringerBriefs in Applied Sciences and Technology, 2017, , 81-100.	0.2	0

#	Article	IF	CITATIONS
127	Halide Perovskite Lasers. , 2017, , .		0
128	Green Stimulated Emission Boosted by Nonradiative Resonant Energy Transfer from Blue Quantum Dots. Journal of Physical Chemistry Letters, 2016, 7, 2772-2778.	2.1	12
129	Phononâ€Assisted Anti‧tokes Lasing in ZnTe Nanoribbons. Advanced Materials, 2016, 28, 276-283.	11.1	41
130	Synthesis and Characterization of Mn:ZnSe/ZnS/ZnMnS Sandwiched QDs for Multimodal Imaging and Theranostic Applications. Small, 2016, 12, 534-546.	5.2	33
131	Discerning the Surface and Bulk Recombination Kinetics of Organic–Inorganic Halide Perovskite Single Crystals. Advanced Energy Materials, 2016, 6, 1600551.	10.2	271
132	Perovskite Materials for Lightâ€Emitting Diodes and Lasers. Advanced Materials, 2016, 28, 6804-6834.	11.1	1,188
133	Dominant factors limiting the optical gain in layered two-dimensional halide perovskite thin films. Physical Chemistry Chemical Physics, 2016, 18, 14701-14708.	1.3	73
134	Hierarchically branched Fe ₂ O ₃ @TiO ₂ nanorod arrays for photoelectrochemical water splitting: facile synthesis and enhanced photoelectrochemical performance. Nanoscale, 2016, 8, 11284-11290.	2.8	87
135	Highly stable, luminescent core–shell type methylammonium–octylammonium lead bromide layered perovskite nanoparticles. Chemical Communications, 2016, 52, 7118-7121.	2.2	138
136	Spatial Separation of Charge Carriers in In ₂ O _{3–<i>x</i>} (OH) _{<i>y</i>} Nanocrystal Superstructures for Enhanced Gas-Phase Photocatalytic Activity. ACS Nano, 2016, 10, 5578-5586.	7.3	118
137	Ultrafast charge transfer in MoS ₂ /WSe ₂ p–n Heterojunction. 2D Materials, 2016, 3, 025020.	2.0	179
138	Periodic Organic–Inorganic Halide Perovskite Microplatelet Arrays on Silicon Substrates for Roomâ€Temperature Lasing. Advanced Science, 2016, 3, 1600137.	5.6	121
139	Lasing from halide perovskites. , 2016, , .		0
140	New Insights into the Correlation between Morphology, Excited State Dynamics, and Device Performance of Small Molecule Organic Solar Cells. Advanced Energy Materials, 2016, 6, 1600961.	10.2	34
141	Effectiveness of External Electric Field Treatment of Conjugated Polymers in Bulk-Heterojunction Solar Cells. ACS Applied Materials & amp; Interfaces, 2016, 8, 32282-32291.	4.0	22
142	Highâ€Quality Whisperingâ€Galleryâ€Mode Lasing from Cesium Lead Halide Perovskite Nanoplatelets. Advanced Functional Materials, 2016, 26, 6238-6245.	7.8	529
143	Solutionâ€Processed Tinâ€Based Perovskite for Nearâ€Infrared Lasing. Advanced Materials, 2016, 28, 8191-8196	11.1	222
144	Tunable room-temperature spin-selective optical Stark effect in solution-processed layered halide perovskites. Science Advances, 2016, 2, e1600477.	4.7	112

#	Article	IF	CITATIONS
145	A large area (70 cm ²) monolithic perovskite solar module with a high efficiency and stability. Energy and Environmental Science, 2016, 9, 3687-3692.	15.6	213
146	High brightness formamidinium lead bromide perovskite nanocrystal light emitting devices. Scientific Reports, 2016, 6, 36733.	1.6	134
147	Carrier dynamics in low-dimensional perovskites. , 2016, , .		0
148	Hierarchical Porous LiNi1/3Co1/3Mn1/3O2 Nano-/Micro Spherical Cathode Material: Minimized Cation Mixing and Improved Li+ Mobility for Enhanced Electrochemical Performance. Scientific Reports, 2016, 6, 25771.	1.6	178
149	Solvent engineering for fast growth of centimetric high-quality CH ₃ NH ₃ PbI ₃ perovskite single crystals. New Journal of Chemistry, 2016, 40, 7261-7264.	1.4	20
150	Modulating carrier dynamics through perovskite film engineering. Physical Chemistry Chemical Physics, 2016, 18, 27119-27123.	1.3	33
151	Achieving Ultrafast Hole Transfer at the Monolayer MoS ₂ and CH ₃ NH ₃ Pbl ₃ Perovskite Interface by Defect Engineering. ACS Nano, 2016, 10, 6383-6391.	7.3	130
152	Prolonged Electron Lifetime in Ordered TiO ₂ Mesophyll Cellâ€Like Microspheres for Efficient Photocatalytic Water Reduction and Oxidation. Small, 2016, 12, 2291-2299.	5.2	50
153	Origin of Photocarrier Losses in Iron Pyrite (FeS ₂) Nanocubes. ACS Nano, 2016, 10, 4431-4440.	7.3	56
154	A Photonic Crystal Laser from Solution Based Organo-Lead Iodide Perovskite Thin Films. ACS Nano, 2016, 10, 3959-3967.	7.3	238
155	Spectral Features and Charge Dynamics of Lead Halide Perovskites: Origins and Interpretations. Accounts of Chemical Research, 2016, 49, 294-302.	7.6	159
156	Carbon nanotubes as an efficient hole collector for high voltage methylammonium lead bromide perovskite solar cells. Nanoscale, 2016, 8, 6352-6360.	2.8	88
157	Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers. Applied Physics Letters, 2015, 107, .	1.5	25
158	Colorimetric Detection of Creatinine Based on Plasmonic Nanoparticles via Synergistic Coordination Chemistry. Small, 2015, 11, 4104-4110.	5.2	54
159	Charge Accumulation and Hysteresis in Perovskiteâ€Based Solar Cells: An Electroâ€Optical Analysis. Advanced Energy Materials, 2015, 5, 1500829.	10.2	217
160	Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light–Matter Interactions. Advanced Materials, 2015, 27, 7800-7808.	11.1	109
161	Vapor Phase Synthesis of Organometal Halide Perovskite Nanowires for Tunable Room-Temperature Nanolasers. Nano Letters, 2015, 15, 4571-4577.	4.5	405
162	Efficient three-color white organic light-emitting diodes with a spaced multilayer emitting structure. Applied Physics Letters, 2015, 106, .	1.5	26

#	Article	IF	CITATIONS
163	Highly Spin-Polarized Carrier Dynamics and Ultralarge Photoinduced Magnetization in CH ₃ NH ₃ Pbl ₃ Perovskite Thin Films. Nano Letters, 2015, 15, 1553-1558.	4.5	183
164	Whispering Gallery Mode Lasing from Hexagonal Shaped Layered Lead Iodide Crystals. ACS Nano, 2015, 9, 687-695.	7.3	118
165	Engineering Interfacial Photoâ€Induced Charge Transfer Based on Nanobamboo Array Architecture for Efficient Solarâ€toâ€Chemical Energy Conversion. Advanced Materials, 2015, 27, 2207-2214.	11.1	172
166	Energetics and dynamics in organic–inorganic halide perovskite photovoltaics and light emitters. Nanotechnology, 2015, 26, 342001.	1.3	75
167	Defect Engineered g-C ₃ N ₄ for Efficient Visible Light Photocatalytic Hydrogen Production. Chemistry of Materials, 2015, 27, 4930-4933.	3.2	401
168	Cooperative Enhancement of Second-Harmonic Generation from a Single CdS Nanobelt-Hybrid Plasmonic Structure. ACS Nano, 2015, 9, 5018-5026.	7.3	43
169	Interfacial Electron Transfer Barrier at Compact TiO ₂ /CH ₃ NH ₃ PbI ₃ Heterojunction. Small, 2015, 11, 3606-3613.	5.2	196
170	Purified plasmonic lasing with strong polarization selectivity by reflection. Optics Express, 2015, 23, 15657.	1.7	4
171	Measurement of sub-10 fs Auger processes in monolayer graphene. Optics Express, 2015, 23, 21107.	1.7	5
172	SnS44–, SbS43–, and AsS33– Metal Chalcogenide Surface Ligands: Couplings to Quantum Dots, Electron Transfers, and All-Inorganic Multilayered Quantum Dot Sensitized Solar Cells. Journal of the American Chemical Society, 2015, 137, 13827-13835.	6.6	32
173	Optically Pumped Distributed Feedback Laser from Organo-Lead Iodide Perovskite Thin Films. , 2015, , .		4
174	Enhancement of Performance and Mechanism Studies of All-Solution Processed Small-Molecule based Solar Cells with an Inverted Structure. ACS Applied Materials & 2015, 7, 21245-21253.	4.0	12
175	Correlation between blend morphology and recombination dynamics in additive-added P3HT:PCBM solar cells. Physical Chemistry Chemical Physics, 2015, 17, 26111-26120.	1.3	15
176	Mesoporous cerium oxide nanospheres for the visible-light driven photocatalytic degradation of dyes. Beilstein Journal of Nanotechnology, 2014, 5, 517-523.	1.5	62
177	Direct measurement of coherent phonon dynamics in solution-processed stibnite thin films. Physical Review B, 2014, 90, .	1.1	13
178	Charge dynamics in alkanedithiols-additives in P3HT:PCBM bulk heterojunction solar cells. Proceedings of SPIE, 2014, , .	0.8	0
179	Ag nanoparticle-blended plasmonic organic solar cells: performance enhancement or detraction?. , 2014, , .		2
180	Solar-to-fuels conversion over In2O3/g-C3N4 hybrid photocatalysts. Applied Catalysis B: Environmental, 2014, 147, 940-946.	10.8	398

#	Article	IF	CITATIONS
181	Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nature Materials, 2014, 13, 476-480.	13.3	2,725
182	Synthesis of Organic–Inorganic Lead Halide Perovskite Nanoplatelets: Towards Highâ€Performance Perovskite Solar Cells and Optoelectronic Devices. Advanced Optical Materials, 2014, 2, 838-844.	3.6	363
183	Dual Wavelength Electroluminescence from CdSe/CdS Tetrapods. ACS Nano, 2014, 8, 2873-2879.	7.3	56
184	Cu2ZnSn(S,Se)4 kesterite solar cell with 5.1% efficiency using spray pyrolysis of aqueous precursor solution followed by selenization. Solar Energy Materials and Solar Cells, 2014, 124, 55-60.	3.0	97
185	Advancements in perovskite solar cells: photophysics behind the photovoltaics. Energy and Environmental Science, 2014, 7, 2518-2534.	15.6	694
186	Spatially-Resolved Ultrafast Optical Spectroscopy of Polymer-Grafted Residues on CVD Graphene. Journal of Physical Chemistry C, 2014, 118, 708-713.	1.5	10
187	The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy and Environmental Science, 2014, 7, 399-407.	15.6	965
188	Electron Transport Limitation in P3HT:CdSe Nanorods Hybrid Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 894-902.	4.0	10
189	First-principles study of the lattice dynamics of Sb ₂ S ₃ . Physical Chemistry Chemical Physics, 2014, 16, 345-350.	1.3	72
190	The photophysics of perovskite solar cells. Proceedings of SPIE, 2014, , .	0.8	0
191	Energy level alignment at the methylammonium lead iodide/copper phthalocyanine interface. APL Materials, 2014, 2, .	2.2	80
192	MODULATING CH ₃ NH ₃ Pbl ₃ PEROVSKITE CRYSTALLIZATION BEHAVIOR THROUGH PRECURSOR CONCENTRATION. Nano, 2014, 09, 1440003.	0.5	10
193	Larger π-extended anti-/syn-aroylenediimidazole polyaromatic compounds: synthesis, physical properties, self-assembly, and quasi-linear conjugation effect. RSC Advances, 2014, 4, 17822-17831.	1.7	23
194	Novel self-assembled 2D networks based on zinc metal ion co-ordination: synthesis and comparative study with 3D networks. RSC Advances, 2014, 4, 17680-17693.	1.7	8
195	Performance Improvements in Polymer Nanofiber/Fullerene Solar Cells with External Electric Field Treatment. Journal of Physical Chemistry C, 2014, 118, 11285-11291.	1.5	26
196	Elucidating the Localized Plasmonic Enhancement Effects from a Single Ag Nanowire in Organic Solar Cells. ACS Nano, 2014, 8, 10101-10110.	7.3	33
197	Solar Cells: Synthesis of Organic-Inorganic Lead Halide Perovskite Nanoplatelets: Towards High-Performance Perovskite Solar Cells and Optoelectronic Devices (Advanced Optical Materials) Tj ETQq1 1 0.78	8 43 614 rgE	3T3/Overlock
198	Ambipolar Charge Photogeneration and Transfer at GaAs/P3HT Heterointerfaces. Journal of Physical Chemistry Letters, 2014, 5, 1144-1150.	2.1	9

#	Article	IF	CITATIONS
199	Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16458-16462.	1.5	657
200	A room temperature low-threshold ultraviolet plasmonic nanolaser. Nature Communications, 2014, 5, 4953.	5.8	278
201	Room-Temperature Near-Infrared High-Q Perovskite Whispering-Gallery Planar Nanolasers. Nano Letters, 2014, 14, 5995-6001.	4.5	702
202	Synthesis and photovoltaic properties of novel C60 bisadducts based on benzo[2,1,3]-thiadiazole. Tetrahedron, 2014, 70, 6217-6221.	1.0	22
203	Effect of charge accumulation on the stability of PEDOT:PSS during device operation. Chemical Physics Letters, 2014, 607, 52-56.	1.2	1
204	Enhanced Photocatalytic Hydrogen Production with Synergistic Two-Phase Anatase/Brookite TiO ₂ Nanostructures. Journal of Physical Chemistry C, 2013, 117, 14973-14982.	1.5	134
205	Wavelength Tunable Single Nanowire Lasers Based on Surface Plasmon Polariton Enhanced Burstein–Moss Effect. Nano Letters, 2013, 13, 5336-5343.	4.5	145
206	Improving Photocatalytic H ₂ Evolution of TiO ₂ via Formation of {001}–{010} Quasi-Heterojunctions. Journal of Physical Chemistry C, 2013, 117, 22894-22902.	1.5	38
207	Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH ₃ NH ₃ Pbl ₃ . Science, 2013, 342, 344-347.	6.0	6,060
208	Artificial photosynthetic hydrogen evolution over g-C3N4 nanosheets coupled with cobaloxime. Physical Chemistry Chemical Physics, 2013, 15, 18363.	1.3	101
209	Other origins for the fluorescence modulation of single dye molecules in open-circuit and short-circuit devices. Physical Chemistry Chemical Physics, 2013, 15, 90-93.	1.3	2
210	Photon Upconversion in Heteroâ€nanostructured Photoanodes for Enhanced Nearâ€Infrared Light Harvesting. Advanced Materials, 2013, 25, 1603-1607.	11.1	127
211	Order–disorder transition in a two-dimensional boron–carbon–nitride alloy. Nature Communications, 2013, 4, 2681.	5.8	138
212	Ultrafast Exciton Dynamics and Twoâ€Photon Pumped Lasing from ZnSe Nanowires. Advanced Optical Materials, 2013, 1, 319-326.	3.6	22
213	Exciton Dynamics: Ultrafast Exciton Dynamics and Twoâ€Photon Pumped Lasing from ZnSe Nanowires (Advanced Optical Materials 4/2013). Advanced Optical Materials, 2013, 1, 276-276.	3.6	1
214	Tailoring the Lasing Modes in Semiconductor Nanowire Cavities Using Intrinsic Self-Absorption. Nano Letters, 2013, 13, 1080-1085.	4.5	133
215	Origin of green emission and charge trapping dynamics in ZnO nanowires. Physical Review B, 2013, 87, .	1.1	68
216	Threeâ€Dimensional CdS–Titanate Composite Nanomaterials for Enhanced Visible‣ightâ€Driven Hydrogen Evolution. Small, 2013, 9, 996-1002.	5.2	124

#	Article	IF	CITATIONS
217	Uncovering loss mechanisms in silver nanoparticle-blended plasmonic organic solar cells. Nature Communications, 2013, 4, 2004.	5.8	118
218	Hollow Nanostructures: Efficient Ag@AgCl Cubic Cage Photocatalysts Profit from Ultrafast Plasmon-Induced Electron Transfer Processes (Adv. Funct. Mater. 23/2013). Advanced Functional Materials, 2013, 23, 2902-2902.	7.8	1
219	Efficient Ag@AgCl Cubic Cage Photocatalysts Profit from Ultrafast Plasmonâ€Induced Electron Transfer Processes. Advanced Functional Materials, 2013, 23, 2932-2940.	7.8	270
220	Size-Dependent Exciton Recombination Dynamics in Single CdS Nanowires beyond the Quantum Confinement Regime. Journal of Physical Chemistry C, 2013, 117, 10716-10722.	1.5	52
221	PEGYLATED CONJUGATED OLIGOMERS FOR TARGETED TWO-PHOTON FLUORESCENCE IMAGING OF CANCER CELLS. Journal of Molecular and Engineering Materials, 2013, 01, 1340011.	0.9	0
222	Tuning the influence of metal nanoparticles on ZnO photoluminescence by atomic-layer-deposited dielectric spacer. Nanophotonics, 2013, 2, 153-160.	2.9	26
223	Light Harvesting: Photon Upconversion in Heteroâ€nanostructured Photoanodes for Enhanced Nearâ€Infrared Light Harvesting (Adv. Mater. 11/2013). Advanced Materials, 2013, 25, 1656-1656.	11.1	0
224	Size and Surface Effects on Transient Photoconductivity in CdS Nanobelts Probed by Optical Pump-Terahertz Probe Spectroscopy. , 2013, , .		0
225	Auger-type Hole Trapping Process at Green Emission Centers of ZnO Nanowires. , 2013, , .		0
226	Ultrafast Charge Carrier Dynamics and Upconversion Lasing from ZnSe Nanowires. , 2013, , .		0
227	Tunable Giant Multi-Photon Absorption using Seeded CdSe/CdS Nanorod Heterostructures. , 2012, , .		0
228	Size and surface effects on transient photoconductivity in CdS nanobelts probed by time-resolved terahertz spectroscopy. Applied Physics Letters, 2012, 101, 091104.	1.5	13
229	Tailoring the charge carrier dynamics in ZnO nanowires: the role of surface hole/electron traps. Physical Chemistry Chemical Physics, 2012, 14, 3075.	1.3	56
230	Highly Enhanced Exciton Recombination Rate by Strong Electron–Phonon Coupling in Single ZnTe Nanobelt. Nano Letters, 2012, 12, 6420-6427.	4.5	43
231	Ultralow-Threshold Two-Photon Pumped Amplified Spontaneous Emission and Lasing from Seeded CdSe/CdS Nanorod Heterostructures. ACS Nano, 2012, 6, 10835-10844.	7.3	124
232	Ultrafine Gold Nanowire Networks as Plasmonic Antennae in Organic Photovoltaics. Journal of Physical Chemistry C, 2012, 116, 6453-6458.	1.5	69
233	Hole transfer dynamics from dye molecules to p-type NiO nanoparticles: effects of processing conditions. Physical Chemistry Chemical Physics, 2012, 14, 9511.	1.3	18
234	Experimental and theoretical studies on pyrene-grafted polyoxometalate hybrid. Dalton Transactions, 2012, 41, 12185.	1.6	32

#	Article	IF	CITATIONS
235	Carrier Dynamics in Polymer Nanofiber:Fullerene Solar Cells. Journal of Physical Chemistry C, 2012, 116, 18015-18022.	1.5	25
236	Resonant Aluminum Nanodisk Array for Enhanced Tunable Broadband Light Trapping in Ultrathin Bulk Heterojunction Organic Photovoltaic Devices. Plasmonics, 2012, 7, 677-684.	1.8	22
237	Fluorophore-Doped Core–Multishell Spherical Plasmonic Nanocavities: Resonant Energy Transfer toward a Loss Compensation. ACS Nano, 2012, 6, 6250-6259.	7.3	71
238	Compositionâ€Tunable Vertically Aligned CdS _{<i>x</i>} Se _{1â€<i>x</i>} Nanowire Arrays via van der Waals Epitaxy: Investigation of Optical Properties and Photocatalytic Behavior. Advanced Materials, 2012, 24, 4151-4156.	11.1	69
239	Low Threshold, Amplified Spontaneous Emission from Coreâ€Seeded Semiconductor Nanotetrapods Incorporated into a Sol–Gel Matrix. Advanced Materials, 2012, 24, OP159-64.	11.1	37
240	Efficiency Enhancement in Bulk-Heterojunction Solar Cells Integrated with Large-Area Ag Nanotriangle Arrays. Journal of Physical Chemistry C, 2012, 116, 14820-14825.	1.5	46
241	High index, reactive facet-controlled synthesis of one-dimensional single crystalline rare earth hydroxide nanobelts. CrystEngComm, 2011, 13, 5367.	1.3	4
242	Three-Photon Absorption in Seeded CdSe/CdS Nanorod Heterostructures. Journal of Physical Chemistry C, 2011, 115, 17711-17716.	1.5	43
243	Charge transfer dynamics in Cu-doped ZnO nanowires. Applied Physics Letters, 2011, 98, .	1.5	55
244	Dynamics of Bound Exciton Complexes in CdS Nanobelts. ACS Nano, 2011, 5, 3660-3669.	7.3	132
245	The formation of a carbon nanotube–graphene oxide core–shell structure and its possible applications. Carbon, 2011, 49, 5071-5078.	5.4	130
246	Engineering Fluorescence in Auâ€Tipped, CdSeâ€Seeded CdS Nanoheterostructures. Small, 2011, 7, 2847-2852.	5.2	24
247	Carrier and exciton spin dynamics in Cu-doped ZnO nanowires. , 2011, , .		0
248	Defect dynamics and spectral observation of twinning in single crystalline LaAlO3 under subbandgap excitation. Applied Physics Letters, 2011, 98, .	1.5	20
249	Tunable multi-photon absorption cross-sections using seeded CdSe/CdS nanorod heterostructures. , 2011, , .		0
250	Investigation of photophysical, morphological and photovoltaic behavior of poly(p-phenylene) Tj ETQq0 0 0 rgBT /	Overlock (10 Tf 50 142

Probing Ultrafast Carrier-Carrier Scattering Dynamics in Epitaxial Graphene. , 2010, , .

т С Ѕим

#	Article	IF	CITATIONS
253	Bound magnetic polarons induced ferromagnetism in transition-metal-doped oxide nanostructures. , 2010, , .		1
254	Nanoparticle fractionation using an aligned carbon nanotube array. Nanotechnology, 2010, 21, 295702.	1.3	2
255	Enhanced tunability of the multiphoton absorption cross-section in seeded CdSe/CdS nanorod heterostructures. Applied Physics Letters, 2010, 97, .	1.5	35
256	Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles. Applied Physics Letters, 2010, 96, .	1.5	238
257	The Physics of ultrafast saturable absorption in graphene. Optics Express, 2010, 18, 4564.	1.7	304
258	Surface plasmon induced exciton redistribution in ZnCdO/ZnO coaxial multiquantum-well nanowires. Applied Physics Letters, 2010, 97, .	1.5	11
259	ZnCdO/ZnO Coaxial Multiple Quantum Well Nanowire Heterostructures and Optical Properties. Journal of Physical Chemistry C, 2010, 114, 3863-3868.	1.5	31
260	Ultrathin single-crystal ZnO nanobelts: Ag-catalyzed growth and field emission property. Nanotechnology, 2010, 21, 255701.	1.3	72
261	Strong correlation between ferromagnetism and oxygen deficiency in Cr-doped <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mtext>In</mml:mtext></mml:mrow><mml:mn>2< Physical Review B, 2009, 79</mml:mn></mml:mrow></mml:mrow></mml:mrow></mml:math>	/ <mark>111</mark> /mml:mn>	→
262	Enhanced electroluminescence and reduced efficiency roll-off in electrophosphorescent devices using a very high electron mobility material as emitter host and electron transporter. Journal Physics D: Applied Physics, 2009, 42, 065103.	1.3	5
263	Modulated Infrared Electroluminescence From Organic Light-Emitting Diodes. Journal of Lightwave Technology, 2009, 27, 1522-1526.	2.7	5
264	Giant enhancement of top emission from ZnO thin film by nanopatterned Pt. Applied Physics Letters, 2009, 94, .	1.5	106
265	Comparative Study of Roomâ€Temperature Ferromagnetism in Cuâ€Đoped ZnO Nanowires Enhanced by Structural Inhomogeneity. Advanced Materials, 2008, 20, 3521-3527.	11.1	211
266	Cu-Doped ZnO Nanoneedles and Nanonails: Morphological Evolution and Physical Properties. Journal of Physical Chemistry C, 2008, 112, 9579-9585.	1.5	187
267	Magnetic and electric transport properties of Nd0.75Sr1.25Co1â^xMnxO4. Journal of Applied Physics, 2008, 104, .	1.1	3
268	Reduced efficiency roll-off in phosphorescent organic light emitting diodes at ultrahigh current densities by suppression of triplet-polaron quenching. Applied Physics Letters, 2008, 93, .	1.5	58
269	Proton-beam writing of poly-methylmethacrylate buried channel waveguides. Journal of Lightwave Technology, 2006, 24, 3803-3809.	2.7	28
270	Fabrication of optical waveguides using proton beam writing. Journal of Crystal Growth, 2006, 288, 209-212.	0.7	28

#	Article	IF	CITATIONS
271	A progress review of proton beam writing applications in microphotonics. Nuclear Instruments & Methods in Physics Research B, 2005, 231, 364-371.	0.6	43
272	Proton beam writing of erbium-doped waveguide amplifiers. Nuclear Instruments & Methods in Physics Research B, 2005, 231, 394-399.	0.6	11
273	Direct imaging of the end-of-range and surface profiles of proton-beam written erbium-doped waveguide amplifiers by atomic force microscopy. Journal of Applied Physics, 2005, 98, 033533.	1.1	10
274	Erbium-doped waveguide amplifiers fabricated using focused proton beam writing. Applied Physics Letters, 2004, 84, 684-686.	1.5	61
275	Direct measurement of proton-beam-written polymer optical waveguide sidewall morphorlogy using an atomic force microscope. Applied Physics Letters, 2004, 85, 1398-1400.	1.5	17
276	A comparative study of the effect of oxidative stress on the cytoskeleton in human cortical neurons. Toxicology and Applied Pharmacology, 2004, 196, 29-36.	1.3	49
277	The Soy Isoflavone, Genistein, Protects Human Cortical Neuronal Cells from Oxidative Stress. NeuroToxicology, 2004, 25, 885-891.	1.4	94
278	Proton beam writing of passive polymer optical waveguides. , 2004, , .		13
279	Fabrication of micro-optical components in polymer using proton beam writing. , 2004, , .		16
280	Proton beam writing: a progress review. International Journal of Nanotechnology, 2004, 1, 464.	0.1	47
281	Fabrication of micro-optical components in polymer using proton beam micro-machining and modification. Nuclear Instruments & Methods in Physics Research B, 2003, 210, 250-255.	0.6	17
282	Proton beam writing of passive waveguides in PMMA. Nuclear Instruments & Methods in Physics Research B, 2003, 210, 266-271.	0.6	59
283	High-resolution channeling contrast microscopy of compositionally graded Si1â^'XGeX layers. Nuclear Instruments & Methods in Physics Research B, 2003, 210, 483-488.	0.6	0
284	Proton beam writing of low-loss polymer optical waveguides. Applied Physics Letters, 2003, 83, 1707-1709.	1.5	75
285	Probing the SiGe virtual substrate by high-resolution channeling contrast microscopy. Applied Physics Letters, 2002, 80, 2940-2942.	1.5	10
286	Proton beam micromachining: a new tool for precision three-dimensional microstructures. Sensors and Actuators A: Physical, 2001, 92, 370-374.	2.0	38
287	Micro-RBS study of nickel silicide formation. Nuclear Instruments & Methods in Physics Research B, 2001, 181, 399-403.	0.6	5
288	A LabVIEWâ,"¢-based scanning and control system for proton beam micromachining. Nuclear Instruments & Methods in Physics Research B, 2001, 181, 49-53.	0.6	31

#	Article	IF	CITATIONS
289	The use of proton microbeams for the production of microcomponents. Nuclear Instruments & Methods in Physics Research B, 2000, 161-163, 83-89.	0.6	28
290	Sub 100 nm proton beam micromachining: theoretical calculations on resolution limits. Nuclear Instruments & Methods in Physics Research B, 2000, 161-163, 366-370.	0.6	29
291	Contestability and pricing flexibility: Issues in Hong Kong. Telecommunications Policy, 1997, 21, 3-13.	2.6	2
292	Erbium doped waveguide amplifiers fabricated using focused proton beam irradiation. , 0, , .		0
293	Exciton Delocalization Across the Organic Spacer: Origin of Ultrafast Energy Funnelling in Ruddlesden-Popper Perovskites. , 0, , .		0
294	Hot Carrier Temperatures in Halide Perovskites: A Closer Look. , 0, , .		0
295	Perovskite Hot Carrier Dynamics. , 0, , .		0
296	Resistive Switching in Ruddlesdenâ \in "Popper Perovskites for Non-volatile Memories. , 0, , .		0
297	Photophysics of Perovskite Colloidal Nanocrystals. , 0, , .		0
298	Cooling and Trapping. A Complete Map of Hot Carrier Processes in Hybrid Perovskite Nanocrystals. , 0,		0
299	Additives in Halide Perovskite for Blue-LightEmitting Diodes: Passivating Agents or Crystallization Modulators?. , 0, , .		0

300 White Electroluminescence from Perovskite $\hat{a} \in$ "Organic Heterojunction. , 0, , .

0