
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9119771/publications.pdf Version: 2024-02-01

ALESSANDDA F DEDNA

#	Article	IF	CITATIONS
1	Uremic Toxin Lanthionine Induces Endothelial Cell Mineralization In Vitro. Biomedicines, 2022, 10, 444.	3.2	3
2	Nephroplex: a kidney-focused NGS panel highlights the challenges of PKD1 sequencing and identifies a founder BBS4 mutation. Journal of Nephrology, 2021, 34, 1855-1874.	2.0	6
3	MO035COMPUTATIONAL MODELING APPROACH FOR THE COMPREHENSIVE INTERPRETATION OF RARE TUBULOPATHIES. Nephrology Dialysis Transplantation, 2021, 36, .	0.7	0
4	Homocysteine Solution-Induced Response in Aerosol Jet Printed OECTs by Means of Gold and Platinum Gate Electrodes. International Journal of Molecular Sciences, 2021, 22, 11507.	4.1	2
5	Proteomics and metabolomics studies exploring the pathophysiology of renal dysfunction in autosomal dominant polycystic kidney disease and other ciliopathies. Nephrology Dialysis Transplantation, 2020, 35, 1853-1861.	0.7	16
6	DNA Methylation Dysfunction in Chronic Kidney Disease. Genes, 2020, 11, 811.	2.4	16
7	Exploring Key Challenges of Understanding the Pathogenesis of Kidney Disease in Bardet–Biedl Syndrome. Kidney International Reports, 2020, 5, 1403-1415.	0.8	23
8	Legislative proposal in Italy to facilitate contacts between deceased organ donor families and transplant recipients. Journal of Nephrology, 2020, 33, 1333-1342.	2.0	2
9	P0095MOLECULAR MECHANISMS OF THE CARDIOVASCULAR EFFECTS OF LANTHIONINE, A NEW UREMIC TOXIN, AND ITS INTERACTIONS WITH THE REDOX MICROENVIRONMENT. Nephrology Dialysis Transplantation, 2020, 35, .	0.7	0
10	Secondary Hyperparathyroidism and Hypertension: An Intriguing Couple. Journal of Clinical Medicine, 2020, 9, 629.	2.4	14
11	Gut-Derived Metabolites and Their Role in Immune Dysfunction in Chronic Kidney Disease. Toxins, 2020, 12, 245.	3.4	44
12	COVID-19, Low-Molecular-Weight Heparin, and Hemodialysis. Kidney and Blood Pressure Research, 2020, 45, 357-362.	2.0	9
13	Lanthionine and Other Relevant Sulfur Amino Acid Metabolites: Detection of Prospective Uremic Toxins in Serum by Multiple Reaction Monitoring Tandem Mass Spectrometry. Methods in Molecular Biology, 2019, 2007, 9-17.	0.9	5
14	The role of the intestinal microbiota in uremic solute accumulation: a focus on sulfur compounds. Journal of Nephrology, 2019, 32, 733-740.	2.0	22
15	Uremic Toxin Lanthionine Interferes with the Transsulfuration Pathway, Angiogenetic Signaling and Increases Intracellular Calcium. International Journal of Molecular Sciences, 2019, 20, 2269.	4.1	14
16	Homocysteine and chronic kidney disease: an ongoing narrative. Journal of Nephrology, 2019, 32, 673-675.	2.0	17
17	Novel Applications of Lead Acetate and Flow Cytometry Methods for Detection of Sulfur-Containing Molecules. Methods and Protocols, 2019, 2, 13.	2.0	3
18	Urinary proteome in inherited nephrolithiasis. Urolithiasis, 2019, 47, 91-98.	2.0	7

#	Article	IF	CITATIONS
19	Integrin Beta 1 Is Crucial for Urinary Concentrating Ability and Renal Medulla Architecture in Adult Mice. Frontiers in Physiology, 2018, 9, 1273.	2.8	6
20	Zebrafish, a Novel Model System to Study Uremic Toxins: The Case for the Sulfur Amino Acid Lanthionine. International Journal of Molecular Sciences, 2018, 19, 1323.	4.1	11
21	Chitosan Gel to Treat Pressure Ulcers: A Clinical Pilot Study. Pharmaceutics, 2018, 10, 15.	4.5	10
22	ADAM17, a New Player in the Pathogenesis of Chronic Kidney Disease–Mineral and Bone Disorder. , 2017, 27, 453-457.		17
23	The Sulfur Metabolite Lanthionine: Evidence for a Role as a Novel Uremic Toxin. Toxins, 2017, 9, 26.	3.4	22
24	Divergent behavior of hydrogen sulfide pools and of the sulfur metabolite lanthionine, a novel uremic toxin, in dialysis patients. Biochimie, 2016, 126, 97-107.	2.6	37
25	Renal phenotype in Bardet-Biedl syndrome: a combined defect of urinary concentration and dilution is associated with defective urinary AQP2 and UMOD excretion. American Journal of Physiology - Renal Physiology, 2016, 311, F686-F694.	2.7	27
26	Atherosclerosis determinants in renal disease: how much is homocysteine involved?. Nephrology Dialysis Transplantation, 2016, 31, 860-863.	0.7	13
27	Impact of the Uremic Milieu on the Osteogenic Potential of Mesenchymal Stem Cells. PLoS ONE, 2015, 10, e0116468.	2.5	31
28	Gases as Uremic Toxins: Is There Something in the Air?. Seminars in Nephrology, 2014, 34, 135-150.	1.6	24
29	Hydrogen sulfide reduces cell adhesion and relevant inflammatory triggering by preventing ADAM17â€dependent TNFâ€Î± activation. Journal of Cellular Biochemistry, 2013, 114, 1536-1548.	2.6	38
30	Impact of parathyroidectomy on cardiovascular outcomes and survival in chronic hemodialysis patients with secondary hyperparathyroidism. A retrospective study of 50 cases prior to the calcimimetics era. BMC Surgery, 2013, 13, S4.	1.3	41
31	Altered folate receptor 2 expression in uraemic patients on haemodialysis: implications for folate resistance. Nephrology Dialysis Transplantation, 2013, 28, 1214-1224.	0.7	11
32	Low hydrogen sulphide and chronic kidney disease: a dangerous liaison. Nephrology Dialysis Transplantation, 2012, 27, 486-493.	0.7	47
33	Therapy of Hyperhomocysteinemia in Hemodialysis Patients: Effects of Folates and N-Acetylcysteine. , 2012, 22, 507-514.e1.		14
34	Hyperhomocysteinemia in Chronic Renal Failure: Alternative Therapeutic Strategies. , 2012, 22, 191-194.		16
35	Homocysteinylated Albumin Promotes Increased Monocyte-Endothelial Cell Adhesion and Up-Regulation of MCP1, Hsp60 and ADAM17. PLoS ONE, 2012, 7, e31388.	2.5	31
36	The MicroRNA 15a/16–1 Cluster Down-regulates Protein Repair Isoaspartyl Methyltransferase in Hepatoma Cells. Journal of Biological Chemistry, 2011, 286, 43690-43700.	3.4	17

#	Article	IF	CITATIONS
37	Hydrogen Sulfide, a Toxic Gas with Cardiovascular Properties in Uremia: How Harmful Is It?. Blood Purification, 2011, 31, 102-106.	1.8	15
38	Hydrogen sulfide increases after a single hemodialysis session. Kidney International, 2011, 80, 1108-1109.	5.2	5
39	Hydrogen Sulfide, the Third Gaseous Signaling Molecule With Cardiovascular Properties, Is Decreased in Hemodialysis Patients. , 2010, 20, S11-S14.		15
40	The gasotransmitter hydrogen sulfide in hemodialysis patients. Journal of Nephrology, 2010, 23 Suppl 16, S92-6.	2.0	4
41	Hydrogen sulphide-generating pathways in haemodialysis patients: a study on relevant metabolites and transcriptional regulation of genes encoding for key enzymes. Nephrology Dialysis Transplantation, 2009, 24, 3756-3763.	0.7	78
42	PROGRESS IN UREMIC TOXIN RESEARCH: Hyperhomocysteinemia in Uremia—A Red Flag in a Disrupted Circuit. Seminars in Dialysis, 2009, 22, 351-356.	1.3	39
43	Epigenetics in hyperhomocysteinemic states. A special focus on uremia. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 892-899.	2.4	56
44	Is Homocysteine Toxic in Uremia?. , 2008, 18, 12-17.		3
45	Reduction of the genomic damage level in haemodialysis patients by folic acid and vitamin B12 supplementation. Nephrology Dialysis Transplantation, 2008, 23, 3272-3279.	0.7	45
46	Plasma protein homocysteinylation in uremia. Clinical Chemistry and Laboratory Medicine, 2007, 45, 1678-82.	2.3	9
47	L-Propionyl carnitine, homocysteine and S-adenosylhomocysteine in hemodialysis. Journal of Nephrology, 2007, 20, 63-5.	2.0	5
48	Toxic Effects of Hyperhomocysteinemia in Chronic Renal Failure and in Uremia: Cardiovascular and Metabolic Consequences. Seminars in Nephrology, 2006, 26, 20-23.	1.6	7
49	Candidate Risk Factors for Cardiovascular Disease in CKD. Seminars in Nephrology, 2006, 26, 1-2.	1.6	1
50	Do elevated homocysteine levels predict mortality in chronic kidney disease stages 3–4?. Nature Clinical Practice Nephrology, 2006, 2, 614-615.	2.0	1
51	In uremia, plasma levels of anti-protein C and anti-protein S antibodies are associated with thrombosis. Kidney International, 2005, 68, 1223-1229.	5.2	26
52	Hyperhomocysteinemia and macromolecule modifications in uremic patients. Clinical Chemistry and Laboratory Medicine, 2005, 43, 1032-8.	2.3	18
53	Plasma Protein Aspartyl Damage Is Increased in Hemodialysis Patients: Studies on Causes and Consequences. Journal of the American Society of Nephrology: JASN, 2004, 15, 2747-2754.	6.1	37
54	MTHFR C677T polymorphism and skin color: The white man's blackness. Kidney International, 2004, 65, 2444.	5.2	1

#	Article	IF	CITATIONS
55	Hyperhomocysteinemia and cardiovascular disease in uremia: The newest evidence in epidemiology and mechanisms of action. Seminars in Nephrology, 2004, 24, 426-430.	1.6	12
56	Hyperhomocysteinemia and the cardiovascular disease of uremia. Nutrition Research, 2004, 24, 839-849.	2.9	2
57	Homocysteine metabolism in renal failure. Current Opinion in Clinical Nutrition and Metabolic Care, 2004, 7, 53-57.	2.5	42
58	Homocysteine in uremia. American Journal of Kidney Diseases, 2003, 41, S123-S126.	1.9	9
59	Possible mechanisms of homocysteine toxicity. Kidney International, 2003, 63, S137-S140.	5.2	93
60	Folate treatment and unbalanced methylation and changes of allelic expression induced by hyperhomocysteinaemia in patients with uraemia. Lancet, The, 2003, 361, 1693-1699.	13.7	395
61	Hyperhomocysteinemia and protein damage in chronic renal failure and kidney transplant pediatric patientsItalian initiative on uremic hyperhomocysteinemia (IIUH). Journal of Nephrology, 2003, 16, 516-21.	2.0	4
62	Plasma proteins containing damaged L-isoaspartyl residues are increased in uremia: Implications for mechanism. Kidney International, 2001, 59, 2299-2308.	5.2	26
63	Metabolic consequences of hyperhomocysteinemia in uremia. American Journal of Kidney Diseases, 2001, 38, S85-S90.	1.9	20
64	Increased methyl esterification of altered aspartyl residues in erythrocyte membrane proteins in response to oxidative stress. FEBS Journal, 2000, 267, 4397-4405.	0.2	82
65	Occurrence of Dâ€aspartic acid and Nâ€methylâ€Dâ€aspartic acid in rat neuroendocrine tissues and their role in the modulation of luteinizing hormone and growth hormone release. FASEB Journal, 2000, 14, 699-714.	0.5	212
66	Enzymatic Detection of l-Isoaspartyl Residues in Food Proteins and the Protective Properties of Trehalose. Journal of Nutritional Biochemistry, 1997, 8, 535-540.	4.2	8
67	Cytoskeletal behaviour in spectrin and in band 3 deficient spherocytic red cells: evidence for a differentiated splenic conditioning role. British Journal of Haematology, 1996, 93, 38-41.	2.5	22
68	Membrane protein damage and methylation reactions in chronic renal failure. Kidney International, 1996, 50, 358-366.	5.2	62
69	Mechanism of erythrocyte accumulation of methylation inhibitor S-adenosylhomocysteine in uremia. Kidney International, 1995, 47, 247-253.	5.2	109
70	Increased Membrane-Protein Methylation in Hereditary Spherocytosis. A Marker of Cytoskeletal Disarray. FEBS Journal, 1995, 228, 894-898.	0.2	16