
Zhaoyang Fei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9119511/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultra-high surface area porous carbon from catechol rectification residue with excellent adsorption capacity for various organic pollutants. Separation and Purification Technology, 2022, 284, 120244.	7.9	4
2	La/LaF3 co-modified MIL-53(Cr) as an efficient adsorbent for the removal of tetracycline. Journal of Hazardous Materials, 2022, 426, 128112.	12.4	16
3	Alâ€modified Mesoporous SiO ₂ â€matrixâ€supported Uniform CeO ₂ Nanodots with Superior Catalytic Efficiency in DCE Combustion. ChemistrySelect, 2022, 7, .	1.5	1
4	Amino-Functionalized Pore-Expanded MCM-41 for CO ₂ Adsorption: Effect of Alkyl Chain Length of the Template. Industrial & Engineering Chemistry Research, 2022, 61, 9331-9341.	3.7	6
5	Ultrafine Pd species anchored on porous CeO2 nanobundles as a highly efficient catalyst for methane oxidation. Applied Surface Science, 2022, 599, 153909.	6.1	5
6	Plasma-engraved Co3O4 nanostructure toward improved formaldehyde oxidation performance: Insight into the structure–activity relationship. Applied Surface Science, 2022, 600, 154183.	6.1	7
7	Surrogate modeling-based multi-objective optimization for the integrated distillation processes. Chemical Engineering and Processing: Process Intensification, 2021, 159, 108224.	3.6	19
8	Activated carbon prepared from catechol distillation residue for efficient adsorption of aromatic organic compounds from aqueous solution. Chemosphere, 2021, 269, 128750.	8.2	16
9	Silica-confined Ru highly dispersed on ZrO ₂ with enhanced activity and thermal stability in dichloroethane combustion. Nanoscale, 2021, 13, 10765-10770.	5.6	6
10	Design and Control for the Dimethyl Adipate Process with a Sideâ€Reactor Column Configuration. Chemical Engineering and Technology, 2021, 44, 1716-1725.	1.5	3
11	Plasma-induced construction of defect-enriched perovskite oxides for catalytic methane combustion. Environmental Science: Nano, 2021, 8, 2386-2395.	4.3	4
12	High-precision synthesis of α-MnO ₂ nanowires with controllable crystal facets for propane oxidation. CrystEngComm, 2021, 23, 7602-7614.	2.6	12
13	Role of brush-like additives in CO2 adsorbents for the enhancement of amine efficiency. Journal of Environmental Chemical Engineering, 2021, 9, 106709.	6.7	9
14	High-efficiency treatment of benzaldehyde residue using two-stage fluidized-bed/fixed-bed catalytic system. Environmental Technology (United Kingdom), 2020, 41, 2898-2906.	2.2	3
15	Precise fabrication of surface-reconstructed LaMnO3 perovskite with enhanced catalytic performance in CH4 oxidation. Applied Surface Science, 2020, 505, 144112.	6.1	34
16	Ultrafine CeO ₂ Nanodots Embedded in Porous ZrO ₂ for Efficient and Sustainable Chlorine Recycle through Hydrochloric Acid Catalytic Oxidation. ChemistrySelect, 2020, 5, 12442-12449.	1.5	5
17	Simultaneous shaping and confinement of metal–organic polyhedra in alginate-SiO ₂ spheres. Chemical Communications, 2020, 56, 14833-14836.	4.1	4
18	Mn/Co Redox Cycle Promoted Catalytic Performance of Mesoporous SiO 2 â€Confined Highly Dispersed LaMn x Co 1â€x O 3 Perovskite Oxides in nâ€Butylamine Combustion. ChemistrySelect, 2020, 5, 8504-8511.	1.5	2

ZHAOYANG FEI

#	Article	IF	CITATIONS
19	Study on the Mechanism and Kinetics of Waste Polypropylene Cracking Oxidation over the Mn ₂ O ₃ /HY Catalyst by TG–MS and In Situ FTIR. Industrial & Engineering Chemistry Research, 2020, 59, 16569-16578.	3.7	6
20	MINLP Optimization of Side-Reactor Column Configuration Based upon Improved Bat Algorithm. Industrial & Engineering Chemistry Research, 2020, 59, 5945-5955.	3.7	4
21	Facile improvement of amine dispersion in KIT-1 with the alkyl chains template for enhanced CO2 adsorption capacity. Journal of Solid State Chemistry, 2020, 290, 121531.	2.9	9
22	Selectively Etching Lanthanum to Engineer Surface Cobalt-Enriched LaCoO ₃ Perovskite Catalysts for Toluene Combustion. Industrial & Engineering Chemistry Research, 2020, 59, 10804-10812.	3.7	38
23	Iron-doped mesoporous silica, Fe-MCM-41, as an active Lewis acid catalyst for acidolysis of benzyl chloride with fatty acid. Journal of Porous Materials, 2019, 26, 261-269.	2.6	5
24	Facile construction of non-crystalline ZrO2 as an active yet durable catalyst for methane oxychlorination. Journal of Sol-Gel Science and Technology, 2019, 92, 163-172.	2.4	7
25	Modulating the basicity of Zn-MOF-74 <i>via</i> cation exchange with calcium ions. Dalton Transactions, 2019, 48, 14971-14974.	3.3	24
26	A Simple Strategy To Improve PEI Dispersion on MCM-48 with Long-Alkyl Chains Template for Efficient CO ₂ Adsorption. Industrial & Engineering Chemistry Research, 2019, 58, 10975-10983.	3.7	17
27	Construction of uniform nanodots CeO2 stabilized by porous silica matrix for 1,2-dichloroethane catalytic combustion. Chemical Engineering Journal, 2019, 370, 916-924.	12.7	42
28	A citric acid-assisted deposition strategy to synthesize mesoporous SiO ₂ -confined highly dispersed LaMnO ₃ perovskite nanoparticles for <i>n</i> -butylamine catalytic oxidation. RSC Advances, 2019, 9, 8454-8462.	3.6	12
29	CO ₂ Adsorption over Carbon Aerogels: the Effect of Pore and Surface Properties. ChemistrySelect, 2019, 4, 3161-3168.	1.5	15
30	Enhanced Light Olefin Production in Chloromethane Coupling over Mg/Ca Modified Durable HZSM-5 Catalyst. Industrial & Engineering Chemistry Research, 2019, 58, 5131-5139.	3.7	9
31	Polyethylenimine (PEI)-impregnated resin adsorbent with high efficiency and capacity for CO ₂ capture from flue gas. New Journal of Chemistry, 2019, 43, 18345-18354.	2.8	18
32	Ultrafine cobalt oxide nanoparticles embedded in porous SiO2 matrix as efficient and stable catalysts for methane combustion. Molecular Catalysis, 2019, 469, 155-160.	2.0	8
33	Organosilane-Assisted Synthesis of Hierarchical Porous ZSM-5 Zeolite as a Durable Catalyst for Light-Olefins Production from Chloromethane. Industrial & Engineering Chemistry Research, 2018, 57, 446-455.	3.7	25
34	Carbon Aerogels Synthesizd with Cetyltrimethyl Ammonium Bromide (CTAB) as a Catalyst and its Application for CO ₂ Capture. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 155-160.	1.2	5
35	A novel process integrating vacuum distillation with atmospheric chlorination reaction for flexible production of tetrachloroethane and pentachloroethane. Chinese Journal of Chemical Engineering, 2018, 26, 786-794.	3.5	7
36	Mesoporous Mn–Ti amorphous oxides: a robust low-temperature NH ₃ -SCR catalyst. Catalysis Science and Technology, 2018, 8, 6396-6406.	4.1	37

ZHAOYANG FEI

#	Article	IF	CITATIONS
37	Rapid CO2 Adsorption over Hierarchical ZSM-5 with Controlled Mesoporosity. Industrial & Engineering Chemistry Research, 2018, 57, 16875-16883.	3.7	16
38	Solvent-Assisted Stepwise Redox Approach To Generate Zeolite NaA-Supported K ₂ O as Strong Base Catalyst for Michael Addition of Ethyl Acrylate with Ethanol. ACS Omega, 2018, 3, 10188-10197.	3.5	3
39	Structure Manipulation of Carbon Aerogels by Managing Solution Concentration of Precursor and Its Application for CO2 Capture. Processes, 2018, 6, 35.	2.8	9
40	Precisely fabricating Ce-O-Ti structure to enhance performance of Ce-Ti based catalysts for selective catalytic reduction of NO with NH3. Chemical Engineering Journal, 2018, 353, 930-939.	12.7	89
41	Quest for a structure-property relationship in sulfonated graphene catalysts for the additive esterification of carboxylic acids and olefins. Reaction Kinetics, Mechanisms and Catalysis, 2017, 122, 901-914.	1.7	7
42	Multi‣tep Consecutive Photoâ€Chlorination of 1,2â€Dichloroethane: Kinetics and Reactive Distillation Experiment. Chemical Engineering and Technology, 2017, 40, 2329-2338.	1.5	6
43	Enhanced CO ₂ Adsorption Performance on Hierarchical Porous ZSM-5 Zeolite. Energy & Fuels, 2017, 31, 13933-13941.	5.1	68
44	Oxygen consumption rate model in HCl oxidation over a supported CuOâ€CeO ₂ composite oxide catalyst under lean oxygen condition. Canadian Journal of Chemical Engineering, 2016, 94, 1140-1147.	1.7	10
45	Synthesis of tert-butyl acetate via eco-friendly additive reaction over mesoprous silica catalysts with balanced Brönsted and Lewis acid sites. Journal of Porous Materials, 2016, 23, 255-262.	2.6	8
46	CeO ₂ nanodots embedded in a porous silica matrix as an active yet durable catalyst for HCl oxidation. Catalysis Science and Technology, 2016, 6, 5116-5123.	4.1	27
47	Efficient hydrochlorination of glycerol to dichlorohydrin over the COOH-functionalized mesoporous carbon–silica composites. Journal of Porous Materials, 2015, 22, 57-64.	2.6	2
48	HCl Oxidation To Recycle Cl ₂ over a Cu/Ce Composite Oxide Catalyst. Part 2. Single-Tube-Reactor Simulation. Industrial & Engineering Chemistry Research, 2015, 54, 9931-9937.	3.7	3
49	HCl Oxidation for Sustainable Cl ₂ Recycle over the Ce _{<i>x</i>} Zr _{1–<i>x</i>} O ₂ Catalysts: Effects of Ce/Zr Ratio on Activity and Stability. Industrial & Engineering Chemistry Research, 2014, 53, 19438-19445.	3.7	36
50	Efficient cyclohexyl acrylate production by direct addition of acrylic acid and cyclohexene over SBA-15-SO3H. Journal of Porous Materials, 2014, 21, 149-155.	2.6	24
51	Efficient catalytic oxidation of HCl to recycle Cl2 over the CuO–CeO2 composite oxide supported on Y type zeolite. Chemical Engineering Journal, 2014, 257, 273-280.	12.7	24
52	Enhanced activity of MCM-48 based tin catalyst for synthesis of 3-methylbut-3-en-1-ol by adjusting the mesochannel environment. Journal of Industrial and Engineering Chemistry, 2014, 20, 4146-4151.	5.8	11
53	Highly Active and Stable Lanthanumâ€doped Core–Shellâ€structured Ni@SiO ₂ Catalysts for the Partial Oxidation of Methane to Syngas. ChemCatChem, 2013, 5, 3781-3787.	3.7	23
54	HCl Oxidation To Recycle Cl ₂ over a Cu/Ce Composite Oxide Catalyst. Part 1. Intrinsic Kinetic Study. Industrial & Engineering Chemistry Research, 2013, 52, 11897-11903.	3.7	8

ZHAOYANG FEI

#	Article	IF	CITATIONS
55	Geometrical effect of CuO nanostructures on catalytic benzene combustion. Catalysis Science and Technology, 2012, 2, 1705.	4.1	41
56	Morphology-directed synthesis of Co ₃ O ₄ nanotubes based on modified Kirkendall effect and its application in CH ₄ combustion. Chemical Communications, 2012, 48, 853-855.	4.1	116
57	Simultaneous disposal of acrylic acid (ester) wastewater and residue with high efficiency and low energy consumption. , 0, 172, 368-376.		2