Kaspar Delhey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/91191/publications.pdf

Version: 2024-02-01

80 papers 3,276 citations

172457 29 h-index 54 g-index

86 all docs 86 docs citations

86 times ranked 2664 citing authors

#	Article	IF	CITATIONS
1	Females increase offspring heterozygosity and fitness through extra-pair matings. Nature, 2003, 425, 714-717.	27.8	438
2	The effects of life history and sexual selection on male and female plumage colouration. Nature, 2015, 527, 367-370.	27.8	309
3	Plumage colour in nestling blue tits: sexual dichromatism, condition dependence and genetic effects. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 1263-1270.	2.6	145
4	Carotenoid-based bill colour as an indicator of immunocompetence and sperm performance in male mallards. Journal of Evolutionary Biology, 2004, 17, 1111-1120.	1.7	140
5	Paternity analysis reveals opposing selection pressures on crown coloration in the blue tit (Parus) Tj ETQq $1\ 1\ 0.78$	84314 rgB 2.6	T /Overlock 1
6	A review of Gloger's rule, an ecogeographical rule of colour: definitions, interpretations and evidence. Biological Reviews, 2019, 94, 1294-1316.	10.4	106
7	Tradeâ€Offs between Immune Investment and Sexual Signaling in Male Mallards. American Naturalist, 2004, 164, 51-59.	2.1	98
8	Male sexual attractiveness and parental effort in blue tits: a test of the differential allocation hypothesis. Animal Behaviour, 2005, 70, 877-888.	1.9	88
9	Seasonal changes in blue tit crown color: do they signal individual quality?. Behavioral Ecology, 2006, 17, 790-798.	2.2	81
10	Cosmetic Coloration in Birds: Occurrence, Function, and Evolution. American Naturalist, 2007, 169, S145-S158.	2.1	80
11	The Conditionâ€Dependent Development of Carotenoidâ€Based and Structural Plumage in Nestling Blue Tits: Males and Females Differ. American Naturalist, 2007, 169, S122-S136.	2.1	69
12	Immunosenescence in wild animals: metaâ€analysis and outlook. Ecology Letters, 2019, 22, 1709-1722.	6.4	62
13	Conditionâ€dependence of multiple carotenoidâ€based plumage traits: an experimental study. Functional Ecology, 2008, 22, 831-839.	3.6	61
14	Darker where cold and wet: Australian birds follow their own version of Gloger's rule. Ecography, 2018, 41, 673-683.	4.5	60
15	Age differences in blue tit Parus caeruleus plumage colour: within-individual changes or colour-biased survival?. Journal of Avian Biology, 2006, 37, 339-348.	1.2	58
16	Reconciling ecogeographical rules: rainfall and temperature predict global colour variation in the largest bird radiation. Ecology Letters, 2019, 22, 726-736.	6.4	54
17	The Effect of Migratory Shorebirds on the Benthic Species of Three Southwestern Atlantic Argentinean Estuaries. Estuaries and Coasts, 1998, 21, 700.	1.7	53
18	Conservation implications of anthropogenic impacts on visual communication and camouflage. Conservation Biology, 2017, 31, 30-39.	4.7	52

#	Article	IF	Citations
19	Age-dependent association between testosterone and crown UV coloration in male blue tits (Parus) Tj ETQq 11	0.784314 r ₁	gBT /Overlo
20	Seasonal Changes in Colour: A Comparison of Structural, Melanin- and Carotenoid-Based Plumage Colours. PLoS ONE, 2010, 5, e11582.	2.5	51
21	Gloger's rule. Current Biology, 2017, 27, R689-R691.	3.9	51
22	A practical framework to analyze variation in animal colors using visual models. Behavioral Ecology, 2015, 26, 367-375.	2.2	50
23	Quantifying Variability of Avian Colours: Are Signalling Traits More Variable?. PLoS ONE, 2008, 3, e1689.	2.5	49
24	Fertilization success and UV ornamentation in blue tits Cyanistes caeruleus: correlational and experimental evidence. Behavioral Ecology, 2007, 18, 399-409.	2.2	45
25	No evidence for general conditionâ€dependence of structural plumage colour in blue tits: an experiment. Journal of Evolutionary Biology, 2011, 24, 976-987.	1.7	45
26	Small- and large-scale effect of the SW Atlantic burrowing crab Chasmagnathus granulatus on habitat use by migratory shorebirds. Journal of Experimental Marine Biology and Ecology, 2005, 315, 87-101.	1.5	38
27	The colour of an avifauna: A quantitative analysis of the colour of Australian birds. Scientific Reports, 2016, 5, 18514.	3.3	35
28	Brood sex ratio and male UV ornamentation in blue tits (Cyanistes caeruleus): correlational evidence and an experimental test. Behavioral Ecology and Sociobiology, 2007, 61, 853-862.	1.4	32
29	CONSERVATION STATUS OF THE BUFF-BREASTED SANDPIPER: HISTORIC AND CONTEMPORARY DISTRIBUTION AND ABUNDANCE IN SOUTH AMERICA. The Wilson Bulletin, 2002, 114, 44-72.	0.5	31
30	Increased conspicuousness can explain the match between visual sensitivities and blue plumage colours in fairy-wrens. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20121771.	2.6	30
31	Conspicuous Plumage Does Not Increase Predation Risk: A Continent-Wide Test Using Model Songbirds. American Naturalist, 2019, 193, 359-372.	2.1	30
32	The evolution of mimicry of friarbirds by orioles (Aves: Passeriformes) in Australo-Pacific archipelagos. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160409.	2.6	29
33	Evolutionary drivers of seasonal plumage colours: colour change by moult correlates with sexual selection, predation risk and seasonality across passerines. Ecology Letters, 2019, 22, 1838-1849.	6.4	29
34	Female and male plumage colour signals aggression in a dichromatic tropical songbird. Animal Behaviour, 2019, 150, 285-301.	1.9	28
35	The carotenoid-continuum: carotenoid-based plumage ranges from conspicuous to cryptic and back again. BMC Ecology, 2010, 10, 13.	3.0	25
36	Seasonal male plumage as a multi-component sexual signal: insights and opportunities. Emu, 2013, 113, 232-247.	0.6	25

#	Article	IF	CITATIONS
37	Colourâ€variable birds have broader ranges, wider niches and are less likely to be threatened. Journal of Evolutionary Biology, 2013, 26, 1559-1568.	1.7	24
38	Is color data from citizen science photographs reliable for biodiversity research?. Ecology and Evolution, 2021, 11, 4071-4083.	1.9	24
39	Cooperative breeding and the emergence of multilevel societies in birds. Ecology Letters, 2022, 25, 766-777.	6.4	24
40	Conspicuous plumage colours are highly variable. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162593.	2.6	23
41	Habitat structure is linked to the evolution of plumage colour in female, but not male, fairy-wrens. BMC Evolutionary Biology, 2017, 17, 35.	3.2	23
42	Bright birds are cautious: seasonally conspicuous plumage prompts risk avoidance by male superb fairy-wrens. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170446.	2.6	23
43	Hot and dry conditions predict shorter nestling telomeres in an endangered songbird: Implications for population persistence. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	22
44	Neutral and selective drivers of colour evolution in a widespread Australian passerine. Journal of Biogeography, 2017, 44, 522-536.	3.0	21
45	Territorial responses of male blue tits, Cyanistes caeruleus, to UV-manipulated neighbours. Journal of Ornithology, 2007, 148, 179.	1.1	18
46	Optical properties of the uropygial gland secretion: no evidence for UV cosmetics in birds. Die Naturwissenschaften, 2008, 95, 939-946.	1.6	18
47	The effect of colourâ€producing mechanisms on plumage sexual dichromatism in passerines and parrots. Functional Ecology, 2017, 31, 903-914.	3.6	17
48	Multiple components of feather microstructure contribute to structural plumage colour diversity in fairy-wrens. Biological Journal of the Linnean Society, 2019, 128, 550-568.	1.6	17
49	Trade-off between migration and reproduction: does a high workload affect body condition and reproductive state?. Behavioral Ecology, 2008, 19, 1351-1360.	2.2	16
50	Laying-order effects on sperm numbers and on paternity: comparing three passerine birds with different life histories. Behavioral Ecology and Sociobiology, 2012, 66, 181-190.	1.4	16
51	The carotenoid conundrum: improved nutrition boosts plasma carotenoid levels but not immune benefits of carotenoid supplementation. Oecologia, 2011, 166, 35-43.	2.0	15
52	Migratory birds are lighter coloured. Current Biology, 2021, 31, R1511-R1512.	3.9	15
53	No consistent female preference for higher crown UV reflectance in Blue Tits <i>Cyanistes caeruleus</i> : a mate choice experiment. Ibis, 2010, 152, 393-396.	1.9	14
54	From ornament to armament or loss of function? Breeding plumage acquisition in a genetically monogamous bird. Journal of Animal Ecology, 2018, 87, 1274-1285.	2.8	14

#	Article	IF	Citations
55	Visual modelling suggests a weak relationship between the evolution of ultraviolet vision and plumage coloration in birds. Journal of Evolutionary Biology, 2015, 28, 715-722.	1.7	13
56	Partial or complete? The evolution of postâ€juvenile moult strategies in passerine birds. Journal of Animal Ecology, 2020, 89, 2896-2908.	2.8	13
57	Rejection of brood-parasitic shiny cowbird Molothrus bonariensis nestlings by the firewood-gatherer Anumbius annumbi?. Journal of Avian Biology, 2011, 42, 463-467.	1.2	12
58	Revealing the colourful side of birds: spatial distribution of conspicuous plumage colours on the body of Australian birds. Journal of Avian Biology, 2020, 51, .	1.2	12
59	Seasonal Variation in Reproductive Output of a Neotropical Temperate Suboscine, the Firewood-gatherer (<i>Anumbius annumbi</i>). Auk, 2010, 127, 222-231.	1.4	11
60	Body size and climate as predictors of plumage colouration and sexual dichromatism in parrots. Journal of Evolutionary Biology, 2020, 33, 1543-1557.	1.7	11
61	The influence of nest-site choice and predator sensory cues on nesting success in the Crimson Finch (<i>Neochmia phaeton</i>). Emu, 2015, 115, 317-325.	0.6	10
62	The effect of skin reflectance on thermal traits in a small heliothermic ectotherm. Journal of Thermal Biology, 2016, 60, 109-124.	2.5	9
63	No fitness benefits of early molt in a fairy-wren: relaxed sexual selection under genetic monogamy?. Behavioral Ecology, 2017, 28, 1055-1067.	2.2	9
64	Why climate change should generally lead to lighter coloured animals. Current Biology, 2020, 30, R1406-R1407.	3.9	9
65	Lens and cornea limit UV vision of birds $\hat{a}\in$ a phylogenetic perspective. Journal of Experimental Biology, 2021, 224, .	1.7	9
66	Testosterone treatment can increase circulating carotenoids but does not affect yellow carotenoidâ€based plumage colour in blue tits <i>Cyanistes caeruleus</i> . Journal of Avian Biology, 2012, 43, 362-368.	1.2	8
67	Nesting attempts of the Cliff Swallow Petrochelidon pyrrhonota in Buenos Aires Province, Argentina. lbis, 2004, 146, 522-525.	1.9	7
68	Avian predation intensity as a driver of clinal variation in colour morph frequency. Journal of Animal Ecology, 2018, 87, 1667-1684.	2.8	7
69	Are longâ€term widespread avian body size changes related to food availability? A test using contemporaneous changes in carotenoidâ€based color. Ecology and Evolution, 2017, 7, 3157-3166.	1.9	6
70	Complex nest decorations of a small brown bird in the Pampas. Frontiers in Ecology and the Environment, 2017, 15, 406-407.	4.0	6
71	Male fairy-wrens produce and maintain vibrant breeding colors irrespective of individual quality. Behavioral Ecology, 2021, 32, 178-187.	2.2	6
72	Nest webs beyond woodpeckers: the ecological role of other nest builders. Ecology, 2018, 99, 985-988.	3.2	5

#	Article	IF	CITATIONS
73	Field Sexing Olrog's Gull (Larus atlanticus) Using Morphometry. Waterbirds, 2018, 41, 411.	0.3	4
74	No evidence for an adaptive role of early molt into breeding plumage in a female fairy wren. Behavioral Ecology, 2020, 31, 411-420.	2.2	3
75	Variability, heritability and condition-dependence of the multidimensional male colour phenotype in a passerine bird. Heredity, 2021, 127, 300-311.	2.6	3
76	Carotenoidâ€based plumage colour saturation increases with temperature in Australian passerines. Journal of Biogeography, 2020, 47, 2671-2683.	3.0	3
77	Fat quill secretion in pigeons: could it function as a cosmetic?. Animal Biology, 2010, 60, 69-78.	1.0	1
78	Lower breeding success in a new range: No evidence for the enemy release hypothesis in South American Barn Swallows. Auk, 2019, 136, .	1.4	1
79	Darker eggs feel the heat. Nature Ecology and Evolution, 2020, 4, 22-23.	7.8	1
80	Emu's first 120 years: landmark papers of change in austral ornithology. Emu, 2021, 121, 284-291.	0.6	O