Laura I Mosquera-Giraldo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9118153/publications.pdf

Version: 2024-02-01

25 papers 884 citations

16 h-index 24 g-index

25 all docs

25 docs citations

25 times ranked

967 citing authors

#	Article	IF	Citations
1	A Mechanistic Study of Drug Mass Transport from Supersaturated Solutions Across PAMPA Membranes. Journal of Pharmaceutical Sciences, 2022, 111, 102-115.	3.3	9
2	Designing synergistic crystallization inhibitors: Bile salt derivatives of cellulose with enhanced hydrophilicity. Carbohydrate Polymers, 2022, 292, 119680.	10.2	6
3	Interaction of Polymers with Enzalutamide Nanodropletsâ€"Impact on Droplet Properties and Induction Times. Molecular Pharmaceutics, 2021, 18, 836-849.	4.6	9
4	Solvent-Casted Films to Assist Polymer Selection for Amorphous Solid Dispersions During Preclinical Studies: In-vitro and In-vivo Exploration. Pharmaceutical Research, 2021, 38, 901-914.	3.5	0
5	Regioselective Bromination of the Dextran Nonreducing End Creates a Pathway to Dextran-Based Block Copolymers. Biomacromolecules, 2020, 21, 1729-1738.	5.4	5
6	Conjugation of bile esters to cellulose by olefin cross-metathesis: A strategy for accessing complex polysaccharide structures. Carbohydrate Polymers, 2019, 221, 37-47.	10.2	9
7	Influence of Polymer and Drug Loading on the Release Profile and Membrane Transport of Telaprevir. Molecular Pharmaceutics, 2018, 15, 1700-1713.	4.6	52
8	Rifampin Stability and Solution Concentration Enhancement Through Amorphous Solid Dispersion in Cellulose ï‰-Carboxyalkanoate Matrices. Journal of Pharmaceutical Sciences, 2018, 107, 127-138.	3.3	25
9	Cellulose-based amorphous solid dispersions enhance rifapentine delivery characteristics in vitro. Carbohydrate Polymers, 2018, 182, 149-158.	10.2	16
10	Crystallization Inhibition Properties of Cellulose Esters and Ethers for a Group of Chemically Diverse Drugs: Experimental and Computational Insight. Biomacromolecules, 2018, 19, 4593-4606.	5.4	20
11	Selective synthesis of curdlan ï‰-carboxyamides by Staudinger ylide nucleophilic ring-opening. Carbohydrate Polymers, 2018, 190, 222-231.	10.2	7
12	Pharmaceutical Applications of Cellulose Ethers and Cellulose Ether Esters. Biomacromolecules, 2018, 19, 2351-2376.	5.4	192
13	Phase Behavior of Drug-Hydroxypropyl Methylcellulose Amorphous Solid Dispersions Produced from Various Solvent Systems: Mechanistic Understanding of the Role of Polymer using Experimental and Theoretical Methods. Molecular Pharmaceutics, 2018, 15, 3236-3251.	4.6	17
14	Tandem modification of amphiphilic cellulose ethers for amorphous solid dispersion via olefin cross-metathesis and thiol-Michael addition. Polymer Chemistry, 2017, 8, 3129-3139.	3.9	25
15	Synthesis and characterization of alkyl cellulose ï‰-carboxyesters for amorphous solid dispersion. Cellulose, 2017, 24, 609-625.	4.9	9
16	Multidrug, Anti-HIV Amorphous Solid Dispersions: Nature and Mechanisms of Impacts of Drugs on Each Other's Solution Concentrations. Molecular Pharmaceutics, 2017, 14, 3617-3627.	4.6	25
17	Novel cellulose-based amorphous solid dispersions enhance quercetin solution concentrations in vitro. Carbohydrate Polymers, 2017, 157, 86-93.	10.2	37
18	Mechanistic Design of Chemically Diverse Polymers with Applications in Oral Drug Delivery. Biomacromolecules, 2016, 17, 3659-3671.	5.4	44

#	Article	IF	CITATIONS
19	Amphiphilic hydroxyalkyl cellulose derivatives for amorphous solid dispersion prepared by olefin cross-metathesis. Polymer Chemistry, 2016, 7, 4953-4963.	3.9	38
20	A Comparison of the Crystallization Inhibition Properties of Bile Salts. Crystal Growth and Design, 2016, 16, 7286-7300.	3.0	45
21	Amphiphilic Cellulose Ethers Designed for Amorphous Solid Dispersion via Olefin Cross-Metathesis. Biomacromolecules, 2016, 17, 454-465.	5.4	30
22	Bile Salts as Crystallization Inhibitors of Supersaturated Solutions of Poorly Water-Soluble Compounds. Crystal Growth and Design, 2015, 15, 2593-2597.	3.0	69
23	Glass–Liquid Phase Separation in Highly Supersaturated Aqueous Solutions of Telaprevir. Molecular Pharmaceutics, 2015, 12, 496-503.	4.6	105
24	Phase Behavior of Resveratrol Solid Dispersions Upon Addition to Aqueous media. Pharmaceutical Research, 2015, 32, 3324-3337.	3.5	24
25	Impact of surfactants on the crystal growth of amorphous celecoxib. International Journal of Pharmaceutics, 2014, 461, 251-257.	5.2	66