Juro Sakai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9116956/publications.pdf

Version: 2024-02-01

		279798	289244
38	2,675	23	40
papers	citations	h-index	g-index
45	45	45	4557
43	43	43	4337
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Sterol-Regulated Release of SREBP-2 from Cell Membranes Requires Two Sequential Cleavages, One Within a Transmembrane Segment. Cell, 1996, 85, 1037-1046.	28.9	486
2	Transcriptional and epigenetic control of brown and beige adipose cell fate and function. Nature Reviews Molecular Cell Biology, 2016, 17, 480-495.	37.0	243
3	H3K4/H3K9me3 Bivalent Chromatin Domains Targeted by Lineage-Specific DNA Methylation Pauses Adipocyte Differentiation. Molecular Cell, 2015, 60, 584-596.	9.7	180
4	The Peroxisome Proliferator-Activated Receptor γ/Retinoid X Receptor α Heterodimer Targets the Histone Modification Enzyme PR-Set7/Setd8 Gene and Regulates Adipogenesis through a Positive Feedback Loop. Molecular and Cellular Biology, 2009, 29, 3544-3555.	2.3	175
5	Obesity and metabolic syndrome in histone demethylase JHDM2aâ€deficient mice. Genes To Cells, 2009, 14, 991-1001.	1.2	167
6	COUP-TFII acts downstream of Wnt/ \hat{l}^2 -catenin signal to silence PPAR \hat{l}^3 gene expression and repress adipogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5819-5824.	7.1	158
7	Hairpin Orientation of Sterol Regulatory Element-binding Protein-2 in Cell Membranes as Determined by Protease Protection. Journal of Biological Chemistry, 1995, 270, 29422-29427.	3.4	136
8	Extracellular Acidic pH Activates the Sterol Regulatory Element-Binding Protein 2 to Promote Tumor Progression. Cell Reports, 2017, 18, 2228-2242.	6.4	129
9	Global Mapping of Cell Type–Specific Open Chromatin by FAIRE-seq Reveals the Regulatory Role of the NFI Family in Adipocyte Differentiation. PLoS Genetics, 2011, 7, e1002311.	3.5	103
10	Vitamin D Metabolite, 25-Hydroxyvitamin D, Regulates Lipid Metabolism by Inducing Degradation of SREBP/SCAP. Cell Chemical Biology, 2017, 24, 207-217.	5.2	96
11	JMJD1A is a signal-sensing scaffold that regulates acute chromatin dynamics via SWI/SNF association for thermogenesis. Nature Communications, 2015, 6, 7052.	12.8	87
12	The KDM3A–KLF2–IRF4 axis maintains myeloma cell survival. Nature Communications, 2016, 7, 10258.	12.8	87
13	Histone demethylase JMJD1A coordinates acute and chronic adaptation to cold stress via thermogenic phospho-switch. Nature Communications, 2018, 9, 1566.	12.8	68
14	Sterol-mediated Regulation of Human Lipin 1 Gene Expression in Hepatoblastoma Cells. Journal of Biological Chemistry, 2009, 284, 22195-22205.	3.4	66
15	Pemafibrate, a selective PPARα modulator, prevents non-alcoholic steatohepatitis development without reducing the hepatic triglyceride content. Scientific Reports, 2020, 10, 7818.	3.3	60
16	Downregulation of ERG and FLI1 expression in endothelial cells triggers endothelial-to-mesenchymal transition. PLoS Genetics, 2018, 14, e1007826.	3.5	54
17	The H3K9 methyltransferase Setdb1 regulates TLR4-mediated inflammatory responses in macrophages. Scientific Reports, 2016, 6, 28845.	3.3	35
18	The FBXL10/KDM2B Scaffolding Protein Associates with Novel Polycomb Repressive Complex-1 to Regulate Adipogenesis. Journal of Biological Chemistry, 2015, 290, 4163-4177.	3.4	33

#	Article	IF	Citations
19	KDM3A coordinates actin dynamics with intraflagellar transport to regulate cilia stability. Journal of Cell Biology, 2017, 216, 999-1013.	5.2	33
20	Phosphoethanolamine Accumulation Protects Cancer Cells under Glutamine Starvation through Downregulation of PCYT2. Cell Reports, 2019, 29, 89-103.e7.	6.4	29
21	QRFP-Deficient Mice Are Hypophagic, Lean, Hypoactive and Exhibit Increased Anxiety-Like Behavior. PLoS ONE, 2016, 11, e0164716.	2.5	28
22	Gene Expression Profiles Induced by a Novel Selective Peroxisome Proliferator-Activated Receptor α Modulator (SPPARMα) Pemafibrate. International Journal of Molecular Sciences, 2019, 20, 5682.	4.1	26
23	PPARÎ 2 Î $^\prime$ activation of CD300a controls intestinal immunity. Scientific Reports, 2014, 4, 5412.	3.3	24
24	Analysis of the subcellular localization of the human histone methyltransferase SETDB1. Biochemical and Biophysical Research Communications, 2015, 465, 725-731.	2.1	24
25	Ubiquitination of Lysine 867 of the Human SETDB1 Protein Upregulates Its Histone H3 Lysine 9 (H3K9) Methyltransferase Activity. PLoS ONE, 2016, 11, e0165766.	2.5	22
26	Overexpression of p54nrb/NONO induces differential <i>EPHA6</i> splicing and contributes to castration-resistant prostate cancer growth. Oncotarget, 2018, 9, 10510-10524.	1.8	22
27	PPARα activation directly upregulates thrombomodulin in the diabetic retina. Scientific Reports, 2020, 10, 10837.	3.3	18
28	Metabolic flexibility via mitochondrial BCAA carrier SLC25A44 is required for optimal fever. ELife, 2021, 10, .	6.0	15
29	Selective PPARα Modulator Pemafibrate and Sodium-Glucose Cotransporter 2 Inhibitor Tofogliflozin Combination Treatment Improved Histopathology in Experimental Mice Model of Non-Alcoholic Steatohepatitis. Cells, 2022, 11, 720.	4.1	13
30	Discovery of peroxisome proliferator–activated receptor α (PPARα) activators with a ligand-screening system using a human PPARα-expressing cell line. Journal of Biological Chemistry, 2018, 293, 10333-10343.	3.4	11
31	ERAD components Derlin-1 and Derlin-2 are essential for postnatal brain development and motor function. IScience, 2021, 24, 102758.	4.1	11
32	Spatiotemporal dynamics of SETD5-containing NCoR–HDAC3 complex determines enhancer activation for adipogenesis. Nature Communications, 2021, 12, 7045.	12.8	10
33	Degradation of human Lipin-1 by BTRC E3 ubiquitin ligase. Biochemical and Biophysical Research Communications, 2017, 488, 159-164.	2.1	6
34	Ubiquitinationâ€dependent and â€independent repression of target genes by SETDB1 reveal a contextâ€dependent role for its methyltransferase activity during adipogenesis. Genes To Cells, 2021, 26, 513-529.	1.2	6
35	Development of a Ligand Screening Tool Using Full-Length Human Peroxisome Proliferator-Activated Receptor-Expressing Cell Lines to Ameliorate Metabolic Syndrome. Chemical and Pharmaceutical Bulletin, 2019, 67, 199-202.	1.3	5
36	Epigenetic and environmental regulation of adipocyte function. Journal of Biochemistry, 2022, 172, 9-16.	1.7	3

#	Article	IF	CITATIONS
37	Loss of Down syndrome critical region-1 leads to cholesterol metabolic dysfunction that exaggerates hypercholesterolemia in ApoE-null background. Journal of Biological Chemistry, 2021, 296, 100697.	3.4	2
38	Measurement of the nuclear concentration of \hat{l}_{\pm} -ketoglutarate during adipocyte differentiation by using a fluorescence resonance energy transfer-based biosensor with nuclear localization signals. Endocrine Journal, 2021, 68, 1429-1438.	1.6	2