Jared T Shaw

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/91169/publications.pdf

Version: 2024-02-01

109321 76900 5,952 105 35 74 citations h-index g-index papers 144 144 144 7451 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Chemical Inhibition of the Mitochondrial Division Dynamin Reveals Its Role in Bax/Bak-Dependent Mitochondrial Outer Membrane Permeabilization. Developmental Cell, 2008, 14, 193-204.	7.0	992
2	A New Copper Acetate-Bis(oxazoline)-Catalyzed, Enantioselective Henry Reaction. Journal of the American Chemical Society, 2003, 125, 12692-12693.	13.7	473
3	Recent advances in multicomponent reactions for diversity-oriented synthesis. Current Opinion in Chemical Biology, 2010, 14, 371-382.	6.1	460
4	Diastereoselective Magnesium Halide-Catalyzed anti-Aldol Reactions of Chiral N-Acyloxazolidinones. Journal of the American Chemical Society, 2002, 124, 392-393.	13.7	280
5	A Stereoelectronic Model To Explain the Highly Stereoselective Reactions of Nucleophiles with Five-Membered-Ring Oxocarbenium Ions. Journal of the American Chemical Society, 1999, 121, 12208-12209.	13.7	216
6	StereoselectiveC-Glycosylation Reactions of Ribose Derivatives:Â Electronic Effects of Five-Membered Ring Oxocarbenium Ions. Journal of the American Chemical Society, 2005, 127, 10879-10884.	13.7	197
7	Cyclic Anhydrides in Formal Cycloadditions and Multicomponent Reactions. Chemical Reviews, 2009, 109, 164-189.	47.7	171
8	The Correct Structure of Aquatolideâ€"Experimental Validation of a Theoretically-Predicted Structural Revision. Journal of the American Chemical Society, 2012, 134, 18550-18553.	13.7	148
9	Magnesium Halide-Catalyzed Anti-Aldol Reactions of ChiralN-Acylthiazolidinethiones. Organic Letters, 2002, 4, 1127-1130.	4.6	138
10	Enantioselective Intramolecular C–H Insertion Reactions of Donor–Donor Metal Carbenoids. Journal of the American Chemical Society, 2014, 136, 15142-15145.	13.7	134
11	Transition Metal Catalyzed Insertion Reactions with Donor/Donor Carbenes. Angewandte Chemie - International Edition, 2021, 60, 6864-6878.	13.8	107
12	Targeting the Bacterial Division Protein FtsZ. Journal of Medicinal Chemistry, 2016, 59, 6975-6998.	6.4	93
13	Enantioselective Si–H Insertion Reactions of Diarylcarbenes for the Synthesis of Silicon-Stereogenic Silanes. Journal of the American Chemical Society, 2020, 142, 11674-11679.	13.7	88
14	Synthesis of Antimicrobial Natural Products Targeting FtsZ:  (±)-Dichamanetin and (±)-2â€~ â€~ã€~-Hydroxy-5â€~〉â€~-benzylisouvarinol-B. Organic Letters, 2005, 7, 5609-5612.	4.6	83
15	Comparative Evaluation of Substituent Effect on the Photochromic Properties of Spiropyrans and Spirooxazines. Journal of Organic Chemistry, 2016, 81, 8744-8758.	3.2	83
16	Tandem Aldolâ^'Tishchenko Reactions of Lithium Enolates:Â A Highly Stereoselective Method for Diol and Triol Synthesis. Journal of Organic Chemistry, 1997, 62, 5674-5675.	3.2	77
17	Diastereoselective Synthesis of \hat{I}^3 -Lactams by a One-Pot, Four-Component Reaction. Organic Letters, 2007, 9, 4077-4080.	4.6	75
18	Synthesis of Diverse Lactam Carboxamides Leading to the Discovery of a New Transcription-Factor Inhibitor. Angewandte Chemie - International Edition, 2007, 46, 5352-5355.	13.8	71

#	Article	IF	CITATIONS
19	Comparison of Small Molecule Inhibitors of the Bacterial Cell Division Protein FtsZ and Identification of a Reliable Cross-Species Inhibitor. ACS Chemical Biology, 2012, 7, 1918-1928.	3.4	71
20	Cycloaddition Reactions of Imines with 3-Thiosuccinic Anhydrides:  Synthesis of the Tricyclic Core of Martinellic Acid. Organic Letters, 2006, 8, 3999-4002.	4.6	67
21	A Structurally Diverse Library of Polycyclic Lactams Resulting from Systematic Placement of Proximal Functional Groups. Angewandte Chemie - International Edition, 2006, 45, 1722-1726.	13.8	61
22	Applied Computational Chemistry for the Blind and Visually Impaired. Journal of Chemical Education, 2012, 89, 1400-1404.	2.3	57
23	Plastidial metabolite MEcPP induces a transcriptionally centered stress-response hub via the transcription factor CAMTA3. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8855-8860.	7.1	57
24	Zinc-Catalyzed Silylation of Terminal Alkynes. Journal of Organic Chemistry, 2008, 73, 2912-2915.	3.2	52
25	Trapping and Electron Paramagnetic Resonance Characterization of the 5′dAdo [•] Radical in a Radical <i>S</i> -Adenosyl Methionine Enzyme Reaction with a Non-Native Substrate. ACS Central Science, 2019, 5, 1777-1785.	11.3	49
26	Ammonia synthons for the multicomponent assembly of complex \hat{l}^3 -lactams. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6781-6786.	7.1	48
27	Synthesis of Antimicrobial Natural Products Targeting FtsZ: (+)-Totarol and Related Totarane Diterpenes. Organic Letters, 2010, 12, 3324-3327.	4.6	47
28	Failsafe Mechanisms Couple Division and DNA Replication in Bacteria. Current Biology, 2014, 24, 2149-2155.	3.9	46
29	Inhibitors of bacterial tubulin target bacterial membranes <i>in vivo</i> . MedChemComm, 2013, 4, 112-119.	3.4	45
30	Synthesis of Benzodihydrofurans by Asymmetric Câ^'H Insertion Reactions of Donor/Donor Rhodium Carbenes. Chemistry - A European Journal, 2017, 23, 11843-11855.	3.3	43
31	Identification of the Molecular Target of Small Molecule Inhibitors of HDL Receptor SR-BI Activity [,] [,] . Biochemistry, 2008, 47, 460-472.	2.5	42
32	Synthesis of (â^')â€Viriditoxin: A 6,6′â€Binaphthopyranâ€2â€one that Targets the Bacterial Cell Division Protein FtsZ. Angewandte Chemie - International Edition, 2011, 50, 3730-3733.	n 13.8	42
33	Stereocontrol in Asymmetric \hat{I}^3 -Lactam Syntheses from Imines and Cyanosuccinic Anhydrides. Organic Letters, 2013, 15, 5130-5133.	4.6	38
34	Enantioselective Synthesis of Indolines, Benzodihydrothiophenes, and Indanes by Câ^'H Insertion of Donor/Donor Carbenes. Angewandte Chemie - International Edition, 2018, 57, 15213-15216.	13.8	37
35	Divergent diastereoselectivity in the addition of nucleophiles to tetrahydrofuran-derived oxonium ions. Tetrahedron, 1999, 55, 8747-8756.	1.9	36
36	Toward Structural Correctness: Aquatolide and the Importance of 1D Proton NMR FID Archiving. Journal of Organic Chemistry, 2016, 81, 878-889.	3.2	36

#	Article	lF	Citations
37	Stereo- and Regiochemistry of Aldehyde Insertions into the C-Si Bonds of Siliranes. Journal of the American Chemical Society, 1995, 117, 10575-10576.	13.7	35
38	Synthesis of Kaempferitrin. Journal of Organic Chemistry, 2007, 72, 4582-4585.	3.2	35
39	One-Step Synthesis of Complex Nitrogen Heterocycles from Imines and Alkyl-Substituted Maleic Anhydrides. Organic Letters, 2009, 11, 3802-3805.	4.6	35
40	Naturally diverse: highlights in versatile synthetic methods enabling target- and diversity-oriented synthesis. Natural Product Reports, 2009, 26, 11-26.	10.3	35
41	Synthesis and Evaluation of Quinazolines as Inhibitors of the Bacterial Cell Division Protein FtsZ. ACS Medicinal Chemistry Letters, 2015, 6, 308-312.	2.8	33
42	Canvass: A Crowd-Sourced, Natural-Product Screening Library for Exploring Biological Space. ACS Central Science, 2018, 4, 1727-1741.	11.3	32
43	Enantioselective synthesis of isochromans and tetrahydroisoquinolines by C–H insertion of donor/donor carbenes. Chemical Science, 2020, 11, 494-498.	7.4	31
44	Catalytic alkene cyclization reactions for the stereoselective synthesis of complex "terpenoid-like― heterocycles. Chemical Science, 2013, 4, 292-296.	7.4	30
45	N-Benzyl-3-sulfonamidopyrrolidines as novel inhibitors of cell division in E. coli. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 6651-6655.	2.2	29
46	Stereoselective Synthesis of \hat{I}^3 -Lactams from Imines and Cyanosuccinic Anhydrides. Organic Letters, 2013, 15, 5126-5129.	4.6	29
47	Nobody Can See Atoms: Science Camps Highlighting Approaches for Making Chemistry Accessible to Blind and Visually Impaired Students. Journal of Chemical Education, 2014, 91, 188-194.	2.3	29
48	Divergent Diastereoselectivity in the Addition of Nucleophiles to Five-Membered-Ring Oxonium Ions. Journal of Organic Chemistry, 1997, 62, 6706-6707.	3.2	26
49	Characterization of Caulobacter crescentus FtsZ Protein Using Dynamic Light Scattering. Journal of Biological Chemistry, 2012, 287, 23878-23886.	3.4	26
50	Gyramides Prevent Bacterial Growth by Inhibiting DNA Gyrase and Altering Chromosome Topology. ACS Chemical Biology, 2014, 9, 1312-1319.	3.4	26
51	Diastereoselective Synthesis of \hat{l}^3 - and \hat{l} -Lactams from Imines and Sulfone-Substituted Anhydrides. Journal of Organic Chemistry, 2014, 79, 2601-2610.	3.2	26
52	Stereoselective Insertion of Formamides into the Câ^'Si Bond of Siliranes. Journal of Organic Chemistry, 1997, 62, 442-443.	3.2	25
53	Synthesis and Stereochemical Assignment of Brasilibactin A. Organic Letters, 2007, 9, 1679-1681.	4.6	25
54	Diastereoselective Synthesis of $(\hat{A}\pm)$ -Heliotropamide by a One-Pot, Four-Component Reaction. Journal of Organic Chemistry, 2010, 75, 8333-8336.	3.2	25

#	Article	IF	CITATIONS
55	Synthesis of $6,6\hat{a}\in^2$ -Binaphthopyran-2-one Natural Products: Pigmentosin A, Talaroderxines A and B. Organic Letters, 2012, 14, 4338-4341.	4.6	25
56	Synthesis of a \hat{I}^3 -Lactam Library via Formal Cycloaddition of Imines and Substituted Succinic Anhydrides. ACS Combinatorial Science, 2012, 14, 218-223.	3.8	25
57	Divergent Structural Complexity from a Linear Reaction Sequence:Â Synthesis of Fused and Spirobicyclic Î ³ -Lactams from Common Synthetic Precursors. ACS Combinatorial Science, 2006, 8, 293-296.	3.3	24
58	Mechanism of Alkoxy Groups Substitution by Grignard Reagents on Aromatic Rings and Experimental Verification of Theoretical Predictions of Anomalous Reactions. Journal of the American Chemical Society, 2013, 135, 6633-6642.	13.7	24
59	Comparison of Proteomic Responses as Global Approach to Antibiotic Mechanism of Action Elucidation. Antimicrobial Agents and Chemotherapy, 2020, 65, .	3.2	23
60	Highly Sensitive and Selective Spiropyran-Based Sensor for Copper(II) Quantification. ACS Omega, 2021, 6, 10776-10789.	3.5	23
61	Transition Metal Catalyzed Insertion Reactions with Donor/Donor Carbenes. Angewandte Chemie, 2021, 133, 6940-6954.	2.0	22
62	Stereo- and Regioselectivity of Reactions of Siliranes with Aldehydes and Related Substrates. Journal of Organic Chemistry, 1997, 62, 4737-4745.	3.2	21
63	Influence of HDL-cholesterol-elevating drugs on the in vitro activity of the HDL receptor SR-BI. Journal of Lipid Research, 2007, 48, 1832-1845.	4.2	21
64	Preparation and synthetic utility of oxasilacyclopentane acetals derived from siliranes. Tetrahedron, 1997, 53, 16597-16606.	1.9	20
65	Practical Synthesis of PC190723, an Inhibitor of the Bacterial Cell Division Protein FtsZ. Journal of Organic Chemistry, 2010, 75, 7946-7949.	3.2	20
66	Direct Displacement of Alkoxy Groups of Vinylogous Esters by Grignard Reagents. Journal of Organic Chemistry, 2011, 76, 3515-3518.	3.2	20
67	Diastereoselective Nucleophilic Substitution Reactions of Oxasilacyclopentane Acetals: Application of the "Inside Attack―Model for Reactions of Five-Membered Ring Oxocarbenium Ions. Journal of Organic Chemistry, 2002, 67, 2056-2064.	3.2	19
68	<i>N</i> -Benzyl-3-sulfonamidopyrrolidines Are a New Class of Bacterial DNA Gyrase Inhibitors. ACS Medicinal Chemistry Letters, 2011, 2, 289-292.	2.8	19
69	Carbon–Carbon Bond-Forming Reactions of α-Thioaryl Carbonyl Compounds for the Synthesis of Complex Heterocyclic Molecules. Journal of Organic Chemistry, 2012, 77, 160-172.	3.2	19
70	Diastereoselective Synthesis of and Mechanistic Understanding for the Formation of 2â€Piperidinones from Imines and Cyanoâ€Substituted Anhydrides. Chemistry - A European Journal, 2016, 22, 4794-4801.	3.3	19
71	Synthesis of Esters by in Situ Formation and Trapping of Diazoalkanes. Journal of Organic Chemistry, 2016, 81, 5278-5284.	3.2	19
72	Mechanistic Investigation of Castagnoli–Cushman Multicomponent Reactions Leading to a Three-Component Synthesis of Dihydroisoquinolones. Journal of Organic Chemistry, 2021, 86, 11599-11607.	3.2	19

#	Article	IF	Citations
73	The Synthesis and Antimicrobial Activity of Heterocyclic Derivatives of Totarol. ACS Medicinal Chemistry Letters, 2012, 3, 818-822.	2.8	18
74	Diastereoselective Base-Catalyzed Formal $[4+2]$ Cycloadditions of $\langle i \rangle N \langle i \rangle$ -Sulfonyl Imines and Cyclic Anhydrides. Organic Letters, 2017, 19, 2466-2469.	4.6	18
75	Second-Generation Synthesis of (-)-Viriditoxin. Synthesis, 2012, 44, 362-371.	2.3	15
76	Synthesis of $(\hat{A}\pm)$ -Bisavenanthramide B-6 by an Anionic Anhydride Mannich Reaction. Organic Letters, 2016, 18, 1740-1743.	4.6	15
77	Synthesis of a Library of "Lead-Like―γ-Lactams by a One Pot, Four-Component Reaction. ACS Combinatorial Science, 2013, 15, 356-362.	3.8	12
78	Organocatalytic Mukaiyama Mannich Reactions of 2,5-Bis(trimethylsilyloxy)furan. Organic Letters, 2019, 21, 5073-5077.	4.6	12
79	Influence of chiral thiols on the diastereoselective synthesis of \hat{I}^3 -lactams from cyclic anhydrides. Tetrahedron, 2012, 68, 4320-4327.	1.9	11
80	Synthesis of the diaryl ether cores common to chrysophaentins A, E, and F. Tetrahedron Letters, 2015, 56, 3396-3401.	1.4	11
81	Enantioselective Synthesis of Indolines, Benzodihydrothiophenes, and Indanes by Câ [^] 'H Insertion of Donor/Donor Carbenes. Angewandte Chemie, 2018, 130, 15433-15436.	2.0	11
82	Antioxidant Sensing by Spiropyrans: Substituent Effects and NMR Spectroscopic Studies. Journal of Physical Chemistry B, 2019, 123, 6799-6809.	2.6	10
83	Formal [4 + 2] Cycloadditions of Anhydrides and $\hat{l}\pm,\hat{l}^2$ -Unsaturated <i>N</i> -Tosyl Ketimines. Organic Letters, 2019, 21, 1046-1049.	4.6	10
84	Synthesis and hybridization property of an oligonucleotide containing a 3′-thioformcetal linked pentathymidylate. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 319-322.	2.2	9
85	Preparation of a conjugation-ready thiol responsive molecular switch. Tetrahedron Letters, 2015, 56, 6569-6573.	1.4	9
86	Targeting quinolone- and aminocoumarin-resistant bacteria with new gyramide analogs that inhibit DNA gyrase. MedChemComm, 2017, 8, 942-951.	3.4	9
87	Synthesis of Spirobicyclic Pyrazoles by Intramolecular Dipolar Cycloadditions/[1s, 5s] Sigmatropic Rearrangements. Organic Letters, 2019, 21, 7209-7212.	4.6	9
88	Divergent stereochemical outcomes in the insertion of donor/donor carbenes into the C–H bonds of stereogenic centers. Chemical Science, 2022, 13, 1030-1036.	7.4	9
89	Enantioselective Synthesis of Isotopically Labeled Homocitric Acid Lactone. Organic Letters, 2013, 15, 5615-5617.	4.6	8
90	Asymmetric Synthesis of Homocitric Acid Lactone. Journal of Organic Chemistry, 2016, 81, 11404-11408.	3.2	8

#	Article	IF	Citations
91	Design and Synthesis of Mimics of the T7-loop of FtsZ. Organic Letters, 2013, 15, 2700-2703.	4.6	7
92	Synthesis and Comparative Evaluation of Photoswitchable Magnetic Resonance Imaging Contrast Agents. ACS Omega, 2020, 5, 14759-14766.	3.5	7
93	Diastereoselective Addition of Prochiral Nucleophilic Alkenes to α-Chiral <i>N</i> Sulfonyl Imines. Organic Letters, 2022, 24, 1164-1168.	4.6	7
94	FtsZâ€Independent Mechanism of Division Inhibition by the Small Molecule PC190723 in Escherichia coli. Advanced Biology, 2019, 3, 1900021.	3.0	6
95	Acyclic Stereocontrol in the Additions of Nucleophilic Alkenes to αâ€Chiral N â€6ulfonyl Imines. Chemistry - A European Journal, 2019, 25, 12214-12220.	3.3	5
96	C–H Insertion Reactions of Donor/Donor Carbenes: Inception, Investigation, and Insights. Synlett, 2020, 31, 838-844.	1.8	5
97	Divergent Asymmetric Synthesis of Panowamycins, TMâ€135, and Veramycin F using C–H Insertion with Donor/Donor Carbenes. Angewandte Chemie - International Edition, 2022, , .	13.8	3
98	Effect of Structure and Intramolecular Distances on Photoswitchable Magnetic Resonance Imaging Contrast Agents. Journal of Organic Chemistry, 2020, 85, 7333-7341.	3.2	2
99	Studies in the Synthesis of Biaryl Natural Products. Strategies and Tactics in Organic Synthesis, 2014, , 225-248.	0.1	1
100	1,3-Asymmetric Induction in Diastereoselective Allylations of Chiral N-Tosyl Imines. Journal of Organic Chemistry, 2022, , .	3.2	1
101	A New Copper Acetate-bis(oxazoline)-Catalyzed, Enantioselective Henry Reaction ChemInform, 2004, 35, no.	0.0	0
102	Magnesium Halide Catalyzed anti-Aldol Reactions of Chiral N-Acylthiazolidinethiones ChemInform, 2010, 33, 28-28.	0.0	0
103	Organic Linking. ACS Chemical Biology, 2010, 5, 255-256.	3.4	0
104	From bead to flask: Synthesis of a complex \hat{l}^2 -amido-amide for probe-development studies. Beilstein Journal of Organic Chemistry, 2013, 9, 260-264.	2.2	0
105	Divergent Asymmetric Synthesis of Panowamycins, TMâ€135, and Veramycin F using C–H Insertion with Donor/Donor Carbenes. Angewandte Chemie, 0, , .	2.0	0