
Grzegorz Wegrzyn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9116791/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phage display and other peptide display technologies. FEMS Microbiology Reviews, 2022, 46, .	8.6	87
2	Promoter considerations in the design of lentiviral vectors for use in treating lysosomal storage diseases. Molecular Therapy - Methods and Clinical Development, 2022, 24, 71-87.	4.1	5
3	Differences in gene expression patterns, revealed by RNA-seq analysis, between various Sanfilippo and Morquio disease subtypes. Gene, 2022, 812, 146090.	2.2	7
4	Should Bacteriophages Be Classified as Parasites or Predators?. Polish Journal of Microbiology, 2022, 71, 3-9.	1.7	11
5	Editorial: Molecular Aspects of Mucopolysaccharidoses. Frontiers in Molecular Biosciences, 2022, 9, 874267.	3.5	7
6	Synchrotron Radiation Circular Dichroism, a New Tool to Probe Interactions between Nucleic Acids Involved in the Control of ColE1-Type Plasmid Replication. Applied Sciences (Switzerland), 2022, 12, 2639.	2.5	4
7	Complex Changes in the Efficiency of the Expression of Many Genes in Monogenic Diseases, Mucopolysaccharidoses, May Arise from Significant Disturbances in the Levels of Factors Involved in the Gene Expression Regulation Processes. Genes, 2022, 13, 593.	2.4	11
8	Enrofloxacin—The Ruthless Killer of Eukaryotic Cells or the Last Hope in the Fight against Bacterial Infections?. International Journal of Molecular Sciences, 2022, 23, 3648.	4.1	28
9	High diversity in the regulatory region of Shiga toxin encoding bacteriophages. BMC Genomics, 2022, 23, 230.	2.8	8
10	Separating gene clustering in the rare mucopolysaccharidosis disease. Journal of Applied Genetics, 2022, 63, 361-368.	1.9	2
11	Impaired ion homeostasis as a possible associate factor in mucopolysaccharidosis pathogenesis: transcriptomic, cellular and animal studies. Metabolic Brain Disease, 2022, 37, 299-310.	2.9	8
12	Highly diverse phenotypes of mucopolysaccharidosis type IIIB sibling patients: effects of an additional mutation in the AUTS2 gene. Journal of Applied Genetics, 2022, 63, 535-542.	1.9	2
13	Efficacy and safety of phage therapy against Salmonella enterica serovars Typhimurium and Enteritidis estimated by using a battery of in vitro tests and the Galleria mellonella animal model. Microbiological Research, 2022, 261, 127052.	5.3	21
14	Changes in expression of signal transduction-related genes, and formation of aggregates of GPER1 and OXTR receptors in mucopolysaccharidosis cells. European Journal of Cell Biology, 2022, 101, 151232.	3.6	7
15	Misdiagnosis in mucopolysaccharidoses. Journal of Applied Genetics, 2022, 63, 475-495.	1.9	14
16	Synergistic Effects of Bacteriophage vB_Eco4-M7 and Selected Antibiotics on the Biofilm Formed by Shiga Toxin-Producing Escherichia coli. Antibiotics, 2022, 11, 712.	3.7	8
17	Behavioral- and blood-based biomarkers for Huntington's disease: Studies on the R6/1 mouse model with prospects for early diagnosis and monitoring of the disease. Brain, Behavior, & Immunity - Health, 2022, 23, 100482.	2.5	6
18	Expression of genes involved in apoptosis is dysregulated in mucopolysaccharidoses as revealed by pilot transcriptomic analyses. Cell Biology International, 2021, 45, 549-557.	3.0	25

#	Article	IF	CITATIONS
19	Hair dysmorphology in the R6/1 and R6/2 mouse models of Huntington's disease. Gene, 2021, 765, 145133.	2.2	4
20	Bacteriophages as sources of small non-coding RNA molecules. Plasmid, 2021, 113, 102527.	1.4	18
21	Changes in cellular processes occurring in mucopolysaccharidoses as underestimated pathomechanisms of these diseases. Cell Biology International, 2021, 45, 498-506.	3.0	39
22	Ferroptosis and Its Modulation by Autophagy in Light of the Pathogenesis of Lysosomal Storage Diseases. Cells, 2021, 10, 365.	4.1	33
23	Extraordinary Multi-Organismal Interactions Involving Bacteriophages, Bacteria, Fungi, and Rotifers: Quadruple Microbial Trophic Network in Water Droplets. International Journal of Molecular Sciences, 2021, 22, 2178.	4.1	7
24	Bacteriophage-Derived Depolymerases against Bacterial Biofilm. Antibiotics, 2021, 10, 175.	3.7	45
25	Phage–Bacteria Interactions in Potential Applications of Bacteriophage vB_EfaS-271 against Enterococcus faecalis. Viruses, 2021, 13, 318.	3.3	21
26	Gene Expression-Related Changes in Morphologies of Organelles and Cellular Component Organization in Mucopolysaccharidoses. International Journal of Molecular Sciences, 2021, 22, 2766.	4.1	20
27	Replication Region Analysis Reveals Non-lambdoid Shiga Toxin Converting Bacteriophages. Frontiers in Microbiology, 2021, 12, 640945.	3.5	7
28	Dosage Compensation in Females with X-Linked Metabolic Disorders. International Journal of Molecular Sciences, 2021, 22, 4514.	4.1	8
29	Temperate Bacteriophages—The Powerful Indirect Modulators of Eukaryotic Cells and Immune Functions. Viruses, 2021, 13, 1013.	3.3	11
30	Editorial: Shiga Toxin-Converting Bacteriophages. Frontiers in Microbiology, 2021, 12, 680816.	3.5	2
31	Discrimination of hospital isolates of Acinetobacter baumannii using repeated sequences and whole genome alignment differential analysis. Journal of Applied Genetics, 2021, 62, 511-521.	1.9	1
32	Bacteriophage-encoded enzymes destroying bacterial cell membranes and walls, and their potential use as antimicrobial agents. Microbiological Research, 2021, 248, 126746.	5.3	42
33	Differential Chromosome- and Plasmid-Borne Resistance of Escherichia coli hfq Mutants to High Concentrations of Various Antibiotics. International Journal of Molecular Sciences, 2021, 22, 8886.	4.1	14
34	Interactions of Bacteriophages with Animal and Human Organisms—Safety Issues in the Light of Phage Therapy. International Journal of Molecular Sciences, 2021, 22, 8937.	4.1	38
35	Oxidative Stress in Mucopolysaccharidoses: Pharmacological Implications. Molecules, 2021, 26, 5616.	3.8	12
36	A Validation System for Selection of Bacteriophages against Shiga Toxin-Producing Escherichia coli Contamination. Toxins, 2021, 13, 644.	3.4	4

#	Article	IF	CITATIONS
37	Unexplored potential: Biologically active compounds produced by microorganisms from hard-to-reach environments and their applications. Acta Biochimica Polonica, 2021, 68, 565-574.	0.5	6
38	Antibacterial, Antifungal and Anticancer Activities of Compounds Produced by Newly Isolated Streptomyces Strains from the Szczelina ChochoÅ,owska Cave (Tatra Mountains, Poland). Antibiotics, 2021, 10, 1212.	3.7	21
39	Phage therapy: Current status and perspectives. Medicinal Research Reviews, 2020, 40, 459-463.	10.5	102
40	Mechanism of selective anticancer activity of isothiocyanates relies on differences in DNA damage repair between cancer and healthy cells. European Journal of Nutrition, 2020, 59, 1421-1432.	3.9	25
41	Mucopolysaccharidosis and Autophagy: Controversies on the Contribution of the Process to the Pathogenesis and Possible Therapeutic Applications. NeuroMolecular Medicine, 2020, 22, 25-30.	3.4	28
42	Formation of Complexes Between O Proteins and Replication Origin Regions of Shiga Toxin-Converting Bacteriophages. Frontiers in Molecular Biosciences, 2020, 7, 207.	3.5	5
43	Proteasome Composition and Activity Changes in Cultured Fibroblasts Derived From Mucopolysaccharidoses Patients and Their Modulation by Genistein. Frontiers in Cell and Developmental Biology, 2020, 8, 540726.	3.7	18
44	Chromosomal localization of PemIK toxin-antitoxin system results in the loss of toxicity – Characterization of pemIK-Sp from Staphylococcus pseudintermedius. Microbiological Research, 2020, 240, 126529.	5.3	1
45	Bacteriophages vB_Sen-TO17 and vB_Sen-E22, Newly Isolated Viruses from Chicken Feces, Specific for Several Salmonella enterica Strains. International Journal of Molecular Sciences, 2020, 21, 8821.	4.1	13
46	One drug to treat many diseases: unlocking the economic trap of rare diseases. Metabolic Brain Disease, 2020, 35, 1237-1240.	2.9	8
47	Changes in expressions of genes involved in the regulation of cellular processes in mucopolysaccharidoses as assessed by fibroblast culture-based transcriptomic analyses. Metabolic Brain Disease, 2020, 35, 1353-1360.	2.9	13
48	Characteristics of a Series of Three Bacteriophages Infecting Salmonella enterica Strains. International Journal of Molecular Sciences, 2020, 21, 6152.	4.1	21
49	Nostoc edaphicum CCNP1411 from the Baltic Sea—A New Producer of Nostocyclopeptides. Marine Drugs, 2020, 18, 442.	4.6	7
50	Characterization of the Bacteriophage vB_EfaS-271 Infecting Enterococcus faecalis. International Journal of Molecular Sciences, 2020, 21, 6345.	4.1	13
51	Transcriptomic analyses suggest that mucopolysaccharidosis patients may be less susceptible to COVIDâ€19. FEBS Letters, 2020, 594, 3363-3370.	2.8	12
52	Has resveratrol a potential for mucopolysaccharidosis treatment?. European Journal of Pharmacology, 2020, 888, 173534.	3.5	14
53	Transcriptomic Changes Related to Cellular Processes with Particular Emphasis on Cell Activation in Lysosomal Storage Diseases from the Group of Mucopolysaccharidoses. International Journal of Molecular Sciences, 2020, 21, 3194.	4.1	22
54	Ea22 Proteins from Lambda and Shiga Toxin-Producing Bacteriophages Balance Structural Diversity with Functional Similarity. ACS Omega, 2020, 5, 12236-12244.	3.5	7

#	Article	IF	CITATIONS
55	Elevated LysoGb3 Concentration in the Neuronopathic Forms of Mucopolysaccharidoses. Diagnostics, 2020, 10, 155.	2.6	8
56	Untypically mild phenotype of a patient suffering from Sanfilippo syndrome B with the c.638C>T/c.889C>T (p.Pro213Leu/p.Arg297Ter) mutations in the <i>NAGLU</i> gene. Molecular Genetics & Genomic Medicine, 2020, 8, e1356.	1.2	6
57	Characterization of a bacteriophage, vB_Eco4M-7, that effectively infects many Escherichia coli O157 strains. Scientific Reports, 2020, 10, 3743.	3.3	46
58	Genetic Base of Behavioral Disorders in Mucopolysaccharidoses: Transcriptomic Studies. International Journal of Molecular Sciences, 2020, 21, 1156.	4.1	22
59	Changes in the vacuolar transport: Insight into pathomechanism of mucopolysaccharidosis. Molecular Genetics and Metabolism, 2020, 129, S60.	1.1	0
60	Underestimated Aspect of Mucopolysaccharidosis Pathogenesis: Global Changes in Cellular Processes Revealed by Transcriptomic Studies. International Journal of Molecular Sciences, 2020, 21, 1204.	4.1	41
61	The ea22 gene of lambdoid phages:Âpreserved prolysogenic function despite of high sequence diversity. Virus Genes, 2020, 56, 266-277.	1.6	8
62	The Role of Metabolites in the Link between DNA Replication and Central Carbon Metabolism in Escherichia coli. Genes, 2020, 11, 447.	2.4	9
63	Novel Expression Vectors Based on the pIGDM1 Plasmid. Molecular Biotechnology, 2019, 61, 763-773.	2.4	8
64	Autophagy-dependent mechanism of genistein-mediated elimination of behavioral and biochemical defects in the rat model of sporadic Alzheimer's disease. Neuropharmacology, 2019, 148, 332-346.	4.1	70
65	Genistein induces degradation of mutant huntingtin in fibroblasts from Huntington's disease patients. Metabolic Brain Disease, 2019, 34, 715-720.	2.9	18
66	Multiple factors correlating with wing malformations in the population of <i>Parnassius apollo</i> (Lepidoptera: Papilionidae) restituted from a low number of individuals: A mini review. Insect Science, 2019, 26, 380-387.	3.0	6
67	Genistein modulates gene activity in psoriatic patients. Acta Biochimica Polonica, 2019, 66, 101-110.	0.5	7
68	Role of orf73 in the development of lambdoid bacteriophages during infection of the Escherichia coli host. Acta Biochimica Polonica, 2019, 66, 589-596.	0.5	5
69	The Use of Bacteriophages in Animal Health and Food Protection. , 2019, , 213-256.		3
70	Effects of some commonly used drinks on induction of Shiga toxin-converting prophage in Escherichia coli. Journal Fur Verbraucherschutz Und Lebensmittelsicherheit, 2018, 13, 125-129.	1.4	7
71	Double silencing of relevant genes suggests the existence of the direct link between DNA replication/repair and central carbon metabolism in human fibroblasts. Gene, 2018, 650, 1-6.	2.2	5
72	Correction of Huntington's Disease Phenotype by Genistein-Induced Autophagy in the Cellular Model. NeuroMolecular Medicine, 2018, 20, 112-123.	3.4	54

#	Article	IF	CITATIONS
73	Inhibition of Shiga toxin-converting bacteriophage development by novel antioxidant compounds. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 639-650.	5.2	8
74	Autophagy stimulation as a promising approach in treatment of neurodegenerative diseases. Metabolic Brain Disease, 2018, 33, 989-1008.	2.9	65
75	Non-steroidal anti-inflammatory drugs are safe with respect to the transcriptome of human dermal fibroblasts. European Journal of Pharmacology, 2018, 818, 206-210.	3.5	Ο
76	Female Fabry disease patients and X-chromosome inactivation. Gene, 2018, 641, 259-264.	2.2	44
77	How close are we to therapies for Sanfilippo disease?. Metabolic Brain Disease, 2018, 33, 1-10.	2.9	52
78	Characterization of adenine nucleotide metabolism in the cellular model of Huntington's disease. Nucleosides, Nucleotides and Nucleic Acids, 2018, 37, 630-638.	1.1	7
79	Multiple links connect central carbon metabolism to DNA replication initiation and elongation in <i>Bacillus subtilis</i> . DNA Research, 2018, 25, 641-653.	3.4	17
80	Roles of orf60a and orf61 in Development of Bacteriophages \hat{I} » and \hat{I} [24B. Viruses, 2018, 10, 553.	3.3	12
81	Differential effects of various soy isoflavone dietary supplements (nutraceuticals) on bacterial growth and human fibroblast viability. Acta Biochimica Polonica, 2018, 65, 325-332.	0.5	3
82	Mitochondria and Reactive Oxygen Species in Aging and Age-Related Diseases. International Review of Cell and Molecular Biology, 2018, 340, 209-344.	3.2	208
83	Phage Therapy: Beyond Antibacterial Action. Frontiers in Medicine, 2018, 5, 146.	2.6	27
84	Mitochondrial alterations accompanied by oxidative stress conditions in skin fibroblasts of Huntington's disease patients. Metabolic Brain Disease, 2018, 33, 2005-2017.	2.9	37
85	Molecular action of isoflavone genistein in the human epithelial cell line HaCaT. PLoS ONE, 2018, 13, e0192297.	2.5	24
86	Characterization of Bacteriophage vB-EcoS-95, Isolated From Urban Sewage and Revealing Extremely Rapid Lytic Development. Frontiers in Microbiology, 2018, 9, 3326.	3.5	48
87	Nonsteroidal anti-inflammatory drugs modulate cellular glycosaminoglycan synthesis by affecting EGFR and PI3K signaling pathways. Scientific Reports, 2017, 7, 43154.	3.3	13
88	Bacteriophages as Factories for Eu2O3Nanoparticle Synthesis. Bioconjugate Chemistry, 2017, 28, 1834-1841.	3.6	8
89	Mitochondrial DNA levels in Huntington disease leukocytes and dermal fibroblasts. Metabolic Brain Disease, 2017, 32, 1237-1247.	2.9	19
90	Sulfpraphane induces autophagy and reduces the level of mutated huntingtin in human fibroblasts. Molecular Genetics and Metabolism, 2017, 120, S31-S32.	1.1	0

#	Article	IF	CITATIONS
91	Prevalence of polymorphisms in OPG, RANKL and RANK as potential markers for Charcot arthropathy development. Scientific Reports, 2017, 7, 501.	3.3	30
92	Silencing of the pentose phosphate pathway genes influences DNA replication in human fibroblasts. Gene, 2017, 635, 33-38.	2.2	16
93	Evidence for interactions between homocysteine and genistein: insights into stroke risk and potential treatment. Metabolic Brain Disease, 2017, 32, 1855-1860.	2.9	6
94	Purified Stx and λ phage initiator O proteins bind specifically to two different origins of replication inÂvitro. Protein Expression and Purification, 2017, 131, 16-26.	1.3	13
95	Small and Smaller—sRNAs and MicroRNAs in the Regulation of Toxin Gene Expression in Prokaryotic Cells: A Mini-Review. Toxins, 2017, 9, 181.	3.4	35
96	Bad Phages in Good Bacteria: Role of the Mysterious orf63 of λ and Shiga Toxin-Converting Φ24B Bacteriophages. Frontiers in Microbiology, 2017, 8, 1618.	3.5	28
97	Suppression of the Escherichia coli dnaA46 mutation by changes in the activities of the pyruvate-acetate node links DNA replication regulation to central carbon metabolism. PLoS ONE, 2017, 12, e0176050.	2.5	18
98	Characterization of conditions and determination of practical tips for mtDNA level estimation in various human cells. Acta Biochimica Polonica, 2017, 64, 699-704.	0.5	4
99	Glycosaminoglycans and mucopolysaccharidosis type III. Frontiers in Bioscience - Landmark, 2016, 21, 1393-1409.	3.0	32
100	Oxidative Stress in Shiga Toxin Production by Enterohemorrhagic <i>Escherichia coli</i> . Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-8.	4.0	38
101	The Role of the <i>Exo-Xis</i> Region in Oxidative Stress-Mediated Induction of Shiga Toxin-Converting Prophages. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-14.	4.0	11
102	The Escherichia Coli Hfq Protein: An Unattended DNA-Transactions Regulator. Frontiers in Molecular Biosciences, 2016, 3, 36.	3.5	64
103	B26â€Differential mitochondrial DNA levels in HD patients depending on the cell type. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A18.1-A18.	1.9	0
104	L11â€A novel approach for treatment of huntington's disease by genistein-mediated stimulation of autophagy. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A93.3-A94.	1.9	0
105	Development of a method for the construction of artificial genes coding for bioactive peptide-based biopolymers. New Biotechnology, 2016, 33, S191.	4.4	0
106	Phage-Directed Synthesis of Photoluminescent Zinc Oxide Nanoparticles under Benign Conditions. Bioconjugate Chemistry, 2016, 27, 1999-2006.	3.6	14
107	Biodiversity of bacteriophages: morphological and biological properties of a large group of phages isolated from urban sewage. Scientific Reports, 2016, 6, 34338.	3.3	179
108	Modified Filamentous Bacteriophage as a Scaffold for Carbon Nanofiber. Bioconjugate Chemistry, 2016, 27, 2900-2910.	3.6	16

#	Article	IF	CITATIONS
109	B29â€Alterations in mitochondrial function in huntington's disease fibroblasts. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A19.2-A19.	1.9	0
110	L12â€Sulforaphane reduces the level of exogenous mutated huntingtin protein in normal human fibroblasts. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A94.1-A94.	1.9	2
111	The model homologue of the partially defective human 5,10-methylenetetrahydrofolate reductase, considered as a risk factor for stroke due to increased homocysteine level, can be protected and reactivated by heat shock proteins. Metabolic Brain Disease, 2016, 31, 1041-1045.	2.9	3
112	Anti-Hsp90 therapy in autoimmune and inflammatory diseases: a review of preclinical studies. Cell Stress and Chaperones, 2016, 21, 213-218.	2.9	76
113	Lesions in the wingless gene of the Apollo butterfly (Parnassius apollo, Lepidoptera: Papilionidae) individuals with deformed or reduced wings, coming from the isolated population in Pieniny (Poland). Gene, 2016, 576, 820-822.	2.2	5
114	Cell cycle is disturbed in mucopolysaccharidosis type II fibroblasts, and can be improved by genistein. Gene, 2016, 585, 100-103.	2.2	23
115	MmoSTI restriction endonuclease, isolated from Morganella morganii infecting a tropical moth, Actias selene, cleaving 5′- CCNGG-3′ sequences. Journal of Applied Genetics, 2016, 57, 143-149.	1.9	1
116	A lack of Wolbachia-specific DNA in samples from apollo butterfly (Parnassius apollo, Lepidoptera:) Tj ETQq0 0 271-274.	0 rgBT /Ove 1.9	erlock 10 Tf 5 8
117	Changes is genes coding for laccases 1 and 2 may contribute to deformation and reduction of wings in apollo butterfly (Parnassius apollo, Lepidoptera: Papilionidae) from the isolated population in Pieniny National Park (Poland) Acta Biochimica Polonica, 2016, 63, 177-180.	0.5	3
118	Modulation of expression of genes involved in glycosaminoglycan metabolism and lysosome biogenesis by flavonoids. Scientific Reports, 2015, 5, 9378.	3.3	44
119	A small, microRNA-size, ribonucleic acid regulating gene expression and development of Shiga toxin-converting bacteriophage Φ24Β. Scientific Reports, 2015, 5, 10080.	3.3	40
120	UV-Sensitivity of Shiga Toxin-Converting Bacteriophage Virions Î 24B, 933W, P22, P27 and P32. Toxins, 2015, 7, 3727-3739.	3.4	14
121	A Simple and Rapid Procedure for the Detection of Genes Encoding Shiga Toxins and Other Specific DNA Sequences. Toxins, 2015, 7, 4745-4757.	3.4	5
122	A new species of clearwing moth (Lepidoptera: Sesiidae: Osminiini) fromÂPeninsular Malaysia, exhibiting bee-like morphology and behaviour. Zootaxa, 2015, 4032, 426-34.	0.5	14
123	Genistein inhibits activities of methylenetetrahydrofolate reductase and lactate dehydrogenase, enzymes which use NADH as a substrate. Biochemical and Biophysical Research Communications, 2015, 465, 363-367.	2.1	7
124	A rapidly progressing, deadly disease of Actias selene (Indian moon moth) larvae associated with a mixed bacterial and baculoviral infection. Journal of Biosciences, 2015, 40, 487-495.	1.1	3
125	Activities of genes controlling sphingolipid metabolism in human fibroblasts treated with flavonoids. Metabolic Brain Disease, 2015, 30, 1257-1267.	2.9	9
126	Effects of flavonoids on expression of genes involved in cell cycle regulation and DNA replication in human fibroblasts. Molecular and Cellular Biochemistry, 2015, 407, 97-109.	3.1	15

#	Article	IF	CITATIONS
127	Baltic cyanobacteria – a source of biologically active compounds. European Journal of Phycology, 2015, 50, 343-360.	2.0	43
128	Hydrophobicity of protein determinants influences the recognition of substrates by EDEM1 and EDEM2 in human cells. BMC Cell Biology, 2015, 16, 1.	3.0	20
129	Defects in RNA polyadenylation impair both lysogenization by and lytic development of Shiga toxin-converting bacteriophages. Journal of General Virology, 2015, 96, 1957-1968.	2.9	21
130	Selective inhibition of cancer cells' proliferation by compounds included in extracts from Baltic Sea cyanobacteria. Toxicon, 2015, 108, 1-10.	1.6	24
131	Effects of partial silencing of genes coding for enzymes involved in glycolysis and tricarboxylic acid cycle on the enterance of human fibroblasts to the S phase. BMC Cell Biology, 2015, 16, 16.	3.0	31
132	Transformation of Shewanella baltica with ColE1-like and P1 plasmids and their maintenance during bacterial growth in cultures. Plasmid, 2015, 81, 42-49.	1.4	9
133	Enzymes of the central carbon metabolism: Are they linkers between transcription, DNA replication, and carcinogenesis?. Medical Hypotheses, 2015, 84, 58-67.	1.5	15
134	Riboregulation of the bacterial actin-homolog MreB by DsrA small noncoding RNA. Integrative Biology (United Kingdom), 2015, 7, 128-141.	1.3	18
135	Small regulatory RNAs in lambdoid bacteriophages and phage-derived plasmids: Not only antisense. Plasmid, 2015, 78, 71-78.	1.4	9
136	Combined Therapies for Lysosomal Storage Diseases. Current Molecular Medicine, 2015, 15, 746-771.	1.3	16
137	Personality and genes: remarks from a biological perspective. Current Issues in Personality Psychology, 2014, 3, 133-140.	0.5	1
138	Bacteriophage T4 can produce progeny virions in extremely slowly growing <i>Escherichia coli</i> host: comparison of a mathematical model with the experimental data. FEMS Microbiology Letters, 2014, 351, 156-161.	1.8	42
139	Antibacterial activity of lichen secondary metabolite usnic acid is primarily caused by inhibition of RNA and DNA synthesis. FEMS Microbiology Letters, 2014, 353, 57-62.	1.8	71
140	The Phytoestrogen Genistein Modulates Lysosomal Metabolism and Transcription Factor EB (TFEB) Activation. Journal of Biological Chemistry, 2014, 289, 17054-17069.	3.4	115
141	A dual promoter system regulating λ DNA replication initiation. Nucleic Acids Research, 2014, 42, 4450-4462.	14.5	6
142	Phenethyl Isothiocyanate Inhibits Shiga Toxin Production in Enterohemorrhagic Escherichia coli by Stringent Response Induction. Antimicrobial Agents and Chemotherapy, 2014, 58, 2304-2315.	3.2	24
143	Factors and processes modulating phenotypes in neuronopathic lysosomal storage diseases. Metabolic Brain Disease, 2014, 29, 1-8.	2.9	20
144	The role of EDEM2 compared with EDEM1Âin ricin transport from the endoplasmic reticulum to the cytosol. Biochemical Journal, 2014, 457, 485-496.	3.7	13

#	Article	IF	CITATIONS
145	Hfq protein deficiency in Escherichia coli affects ColE1-like but not λ plasmid DNA replication. Plasmid, 2014, 73, 10-15.	1.4	23
146	The use of fosmid metagenomic libraries in preliminary screening for various biological activities. Microbial Cell Factories, 2014, 13, 105.	4.0	13
147	Inhibition of biofilm formation by conformationally constrained indole-based analogues of the marine alkaloid oroidin. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2530-2534.	2.2	28
148	Different Expression Patterns of Genes from the Exo-Xis Region of Bacteriophage λ and Shiga Toxin-Converting Bacteriophage Ð 2 4B following Infection or Prophage Induction in Escherichia coli. PLoS ONE, 2014, 9, e108233.	2.5	19
149	Replicating DNA by cell factories: roles of central carbon metabolism and transcription in the control of DNA replication in microbes, and implications for understanding this process in human cells. Microbial Cell Factories, 2013, 12, 55.	4.0	18
150	The mRNA level of the transforming growth factor β1 gene, but not the amount of the gene product, can be considered as a potential prognostic parameter in inflammatory bowel diseases in children. International Journal of Colorectal Disease, 2013, 28, 165-172.	2.2	3
151	Evaluation of mutagenic and antimutagenic properties of new derivatives of pyrrolidine-2,5-dione with anti-epileptic activity, by use of the Vibrio harveyi mutagenicity test. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2013, 758, 18-22.	1.7	16
152	Genes from the exo–xis region of λ and Shiga toxin-converting bacteriophages influence lysogenization and prophage induction. Archives of Microbiology, 2013, 195, 693-703.	2.2	26
153	An improved method for efficient isolation and purification of genomic DNA from filamentous cyanobacteria belonging to genera Anabaena, Nodularia and Nostoc. Oceanological and Hydrobiological Studies, 2013, 42, 8-13.	0.7	3
154	Proteomic profiles and kinetics of development of bacteriophage T4 and its rI and rIII mutants in slowly growing Escherichia coli. Journal of General Virology, 2013, 94, 896-905.	2.9	13
155	Different effects of ppGpp on <i>Escherichia coli</i> DNA replication <i>in vivo</i> and <i>in vitro</i> . FEBS Open Bio, 2013, 3, 161-164.	2.3	25
156	A regulatory role for Staphylococcus aureus toxin–antitoxin system PemIKSa. Nature Communications, 2013, 4, 2012.	12.8	53
157	The Axe-Txe Complex of Enterococcus faecium Presents a Multilayered Mode of Toxin-Antitoxin Gene Expression Regulation. PLoS ONE, 2013, 8, e73569.	2.5	15
158	Mucopolysaccharidosis type <scp>III</scp> (<scp>S</scp> anfilippo syndrome) and misdiagnosis of idiopathic developmental delay, attention deficit/hyperactivity disorder or autism spectrum disorder. Acta Paediatrica, International Journal of Paediatrics, 2013, 102, 462-470.	1.5	102
159	Amino acid residues crucial for specificity of toxin–antitoxin interactions in the homologous <scp>A</scp> xe– <scp>T</scp> xe and <scp>Y</scp> ef <scp>M</scp> – <scp>Y</scp> oe <scp>B</scp> complexes. FEBS Journal, 2013, 280, 5906-5918.	4.7	15
160	ppGpp-Dependent Negative Control of DNA Replication of Shiga Toxin-Converting Bacteriophages in Escherichia coli. Journal of Bacteriology, 2013, 195, 5007-5015.	2.2	26
161	Inhibition of Development of Shiga Toxin–Converting Bacteriophages by Either Treatment with Citrate or Amino Acid Starvation. Foodborne Pathogens and Disease, 2012, 9, 13-19.	1.8	21
162	Putative Biological Mechanisms of Efficiency of Substrate Reduction Therapies for Mucopolysaccharidoses. Archivum Immunologiae Et Therapiae Experimentalis, 2012, 60, 461-468.	2.3	14

#	Article	IF	CITATIONS
163	Novel ZnO-binding peptides obtained by the screening of a phage display peptide library. Journal of Nanoparticle Research, 2012, 14, 1218.	1.9	25
164	Effect of rapid cessation of enzyme replacement therapy: A report of 5 cases and a review of the literature. Molecular Genetics and Metabolism, 2012, 107, 508-512.	1.1	26
165	Molecular analysis of mucopolysaccharidosis type VI in Poland, Belarus, Lithuania and Estonia. Molecular Genetics and Metabolism, 2012, 105, 237-243.	1.1	26
166	Mutations in central carbon metabolism genes suppress defects in nucleoid position and cell division of replication mutants in Escherichia coli. Gene, 2012, 503, 31-35.	2.2	24
167	Changes in hair morphology as a biomarker in gene expression-targeted isoflavone therapy for Sanfilippo disease. Gene, 2012, 504, 292-295.	2.2	8
168	Synthetic genistein derivatives as modulators of glycosaminoglycan storage. Journal of Translational Medicine, 2012, 10, 153.	4.4	20
169	Pseudolysogeny. Advances in Virus Research, 2012, 82, 339-349.	2.1	112
170	Phage λ—New Insights into Regulatory Circuits. Advances in Virus Research, 2012, 82, 155-178.	2.1	61
171	Central carbon metabolism influences fidelity of DNA replication in Escherichia coli. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2012, 731, 99-106.	1.0	17
172	Genistein in Sanfilippo disease: A randomized controlled crossover trial. Annals of Neurology, 2012, 71, 110-120.	5.3	102
173	Altruism of Shiga toxin-producing Escherichia coli: recent hypothesis versus experimental results. Frontiers in Cellular and Infection Microbiology, 2012, 2, 166.	3.9	87
174	Metal and antibiotic resistance of bacteria isolated from the Baltic Sea. International Microbiology, 2012, 15, 131-9.	2.4	15
175	A reliable method for storage of tailed phages. Journal of Microbiological Methods, 2011, 84, 486-489.	1.6	39
176	Drug-resistant epilepsia and fulminant valproate liver toxicity. Alpers-Huttenlocher syndrome in two children confirmed post mortem by identification of p.W748S mutation in POLG gene. Medical Science Monitor, 2011, 17, CR203-CR209.	1.1	35
177	Substrate Reduction Therapies for Mucopolysaccharidoses. Current Pharmaceutical Biotechnology, 2011, 12, 1860-1865.	1.6	26
178	A single point mutation in ricin A-chain increases toxin degradation and inhibits EDEM1-dependent ER retrotranslocation. Biochemical Journal, 2011, 436, 371-385.	3.7	32
179	Mutagenicity of quaternary ammonium salts containing carbohydrate moieties. Journal of Hazardous Materials, 2011, 193, 272-278.	12.4	23
180	Natural history of Polish patients with mucopolysaccharidosis type VI. Open Medicine (Poland), 2011, 6, 163-171.	1.3	5

#	Article	IF	CITATIONS
181	Effects of flavonoids on glycosaminoglycan synthesis: implications for substrate reduction therapy in Sanfilippo disease and other mucopolysaccharidoses. Metabolic Brain Disease, 2011, 26, 1-8.	2.9	52
182	Post mortem identification of deoxyguanosine kinase (DGUOK) gene mutations combined with impaired glucose homeostasis and iron overload features in four infants with severe progressive liver failure. Journal of Applied Genetics, 2011, 52, 61-66.	1.9	40
183	Genetic response to metabolic fluctuations: correlation between central carbon metabolism and DNA replication in Escherichia coli. Microbial Cell Factories, 2011, 10, 19.	4.0	41
184	Improvement in the range of joint motion in seven patients with mucopolysaccharidosis type II during experimental gene expressionâ€ŧargeted isoflavone therapy (GET IT). American Journal of Medical Genetics, Part A, 2011, 155, 2257-2262.	1.2	46
185	Bacteriophages carrying Shiga toxin genes: genomic variations, detection and potential treatment of pathogenic bacteria. Future Microbiology, 2011, 6, 909-924.	2.0	82
186	Persistence of bacteriophage T4 in a starved Escherichia coli culture: evidence for the presence of phage subpopulations. Journal of General Virology, 2011, 92, 997-1003.	2.9	16
187	The application of microarray technology to the identification of Tc1-like element sequences in fish genomes. Marine Biology Research, 2011, 7, 466-477.	0.7	4
188	Replication of plasmids derived from Shiga toxin-converting bacteriophages in starved Escherichia coli. Microbiology (United Kingdom), 2011, 157, 220-233.	1.8	24
189	Coupling of transcription and replication machineries in λ DNA replication initiation: evidence for direct interaction of Escherichia coli RNA polymerase and the λO protein. Nucleic Acids Research, 2011, 39, 168-177.	14.5	26
190	The Use of Elevated Doses of Genistein-Rich Soy Extract in the Gene Expression-Targeted Isoflavone Therapy for Sanfilippo Disease Patients. JIMD Reports, 2011, 5, 21-25.	1.5	25
191	Two-year follow-up of Sanfilippo Disease patients treated with a genistein-rich isoflavone extract: Assessment of effects on cognitive functions and general status of patients. Medical Science Monitor, 2011, 17, CR196-CR202.	1.1	51
192	Genistein: a natural isoflavone with a potential for treatment of genetic diseases. Biochemical Society Transactions, 2010, 38, 695-701.	3.4	54
193	Influence of the Escherichia coli oxyR gene function on λ prophage maintenance. Archives of Microbiology, 2010, 192, 673-683.	2.2	16
194	Transcription regulation of the Escherichia coli pcnB gene coding for poly(A) polymerase I: roles of ppGpp, DksA and sigma factors. Molecular Genetics and Genomics, 2010, 284, 289-305.	2.1	12
195	A role for accessory genes rl1 and rl.1 in the regulation of lysis inhibition by bacteriophage T4. Virus Genes, 2010, 41, 459-468.	1.6	10
196	ppGpp inhibits the activity of Escherichia coli DnaG primase. Plasmid, 2010, 63, 61-67.	1.4	76
197	Different amounts of isoflavones in various commercially available soy extracts in the light of gene expressionâ€ŧargeted isoflavone therapy. Phytotherapy Research, 2010, 24, S109-13.	5.8	21
198	Hydrogen peroxide-mediated induction of the Shiga toxinconverting lambdoid prophage ST2-8624 in <i>Escherichia coli</i> O157:H7. FEMS Immunology and Medical Microbiology, 2010, 58, 322-329.	2.7	90

#	Article	IF	CITATIONS
199	Impairment of glycosaminoglycan synthesis in mucopolysaccharidosis type IIIA cells by using siRNA: a potential therapeutic approach for Sanfilippo disease. European Journal of Human Genetics, 2010, 18, 200-205.	2.8	48
200	Genistein Improves Neuropathology and Corrects Behaviour in a Mouse Model of Neurodegenerative Metabolic Disease. PLoS ONE, 2010, 5, e14192.	2.5	121
201	Why are behaviors of children suffering from various neuronopathic types of mucopolysaccharidoses different?. Medical Hypotheses, 2010, 75, 605-609.	1.5	48
202	Antibacterial and antioxidant activity of the secondary metabolites from <i>in vitro</i> cultures of the Alice sundew (<i>Drosera aliciae</i>). Biotechnology and Applied Biochemistry, 2009, 53, 175-184.	3.1	34
203	Transcription from bacteriophage pR promoter is regulated independently and antagonistically by DksA and ppGpp. Nucleic Acids Research, 2009, 37, 6655-6664.	14.5	31
204	Plasmids Derived from Lambdoid Bacteriophages as Models for Studying Replication of Mobile Genetic Elements Responsible for the Production of Shiga Toxins by Pathogenic <i>Escherichia coli </i> Strains. Journal of Molecular Microbiology and Biotechnology, 2009, 17, 211-220.	1.0	29
205	Classification of plasmid vectors using replication origin, selection marker and promoter as criteria. Plasmid, 2009, 61, 47-51.	1.4	15
206	Correlation between severity of mucopolysaccharidoses and combination of the residual enzyme activity and efficiency of glycosaminoglycan synthesis. Acta Paediatrica, International Journal of Paediatrics, 2009, 98, 743-749.	1.5	38
207	Genistein-mediated inhibition of glycosaminoglycan synthesis, which corrects storage in cells of patients suffering from mucopolysaccharidoses, acts by influencing an epidermal growth factor-dependent pathway. Journal of Biomedical Science, 2009, 16, 26.	7.0	102
208	A novel method for screening the glutathione transferase inhibitors. BMC Biochemistry, 2009, 10, 6.	4.4	8
209	Homocysteine level and metabolism in ischemic stroke in the population of Northern Poland. Clinical Biochemistry, 2009, 42, 442-447.	1.9	28
210	Biodegradation of nodularin and effects of the toxin on bacterial isolates from the Gulf of Gdańsk. Water Research, 2009, 43, 2801-2810.	11.3	34
211	Genistein reduces lysosomal storage in peripheral tissues of mucopolysaccharide IIIB mice. Molecular Genetics and Metabolism, 2009, 98, 235-242.	1.1	90
212	Differential efficiency of induction of various lambdoid prophages responsible for production of Shiga toxins in response to different induction agents. Microbial Pathogenesis, 2009, 47, 289-298.	2.9	93
213	Presence of cna, emp and pls genes and pathogenicity of methicillin-resistant Staphylococcus aureus strains. World Journal of Microbiology and Biotechnology, 2008, 24, 591-594.	3.6	5
214	Comparison of the use of mussels and semipermeable membrane devices for monitoring and assessment of accumulation of mutagenic pollutants in marine environment in combination with a novel microbiological mutagenicity assay. Environmental Monitoring and Assessment, 2008, 140, 83-90.	2.7	8
215	Is tRNA only a translation factor or also a regulator of other processes?. Journal of Applied Genetics, 2008, 49, 115-122.	1.9	24
216	Screening of the osmotic pressure-inducible promoter regions from the whole genome of Escherichia coli by using a novel cloning method. Biotechnology Letters, 2008, 30, 707-711.	2.2	1

#	Article	IF	CITATIONS
217	Abnormalities in the hair morphology of patients with some but not all types of mucopolysaccharidoses. European Journal of Pediatrics, 2008, 167, 203-209.	2.7	23
218	IHF- and SeqA-binding sites, present in plasmid cloning vectors, may significantly influence activities of promoters. Plasmid, 2008, 60, 125-130.	1.4	3
219	Sample processing for DNA chip array-based analysis of enterohemorrhagic Escherichia coli (EHEC). Microbial Cell Factories, 2008, 7, 29.	4.0	5
220	The scientific impact of microbial cell factories. Microbial Cell Factories, 2008, 7, 33.	4.0	3
221	Rapid detection of mutagens accumulated in plant tissues using a novel Vibrio harveyi mutagenicity assay. Ecotoxicology and Environmental Safety, 2008, 70, 231-235.	6.0	4
222	Genistin-rich soy isoflavone extract in substrate reduction therapy for Sanfilippo syndrome: An open-label, pilot study in 10 pediatric patients. Current Therapeutic Research, 2008, 69, 166-179.	1.2	92
223	Simple Method for Plating <i>Escherichia coli</i> Bacteriophages Forming Very Small Plaques or No Plaques under Standard Conditions. Applied and Environmental Microbiology, 2008, 74, 5113-5120.	3.1	81
224	Rapid Identification of Shiga Toxin-producing Escherichia coli (STEC) Using Electric Biochips. Diagnostic Molecular Pathology, 2008, 17, 179-184.	2.1	8
225	Improved HPLC method for total plasma homocysteine detection and quantification Acta Biochimica Polonica, 2008, 55, 119-126.	0.5	34
226	Plasmids derived from Gifsy-1/Gifsy-2, lambdoid prophages contributing to the virulence of Salmonella enterica serovar Typhimurium: implications for the evolution of replication initiation proteins of lambdoid phages and enterobacteria. Microbiology (United Kingdom), 2007, 153, 1884-1896.	1.8	10
227	The C-terminal domain of the Escherichia coli RNA polymerase subunit plays a role in the CI-dependent activation of the bacteriophage pM promoter. Nucleic Acids Research, 2007, 35, 2311-2320.	14.5	13
228	Modulation of λ plasmid and phage DNA replication by Escherichia coli SeqA protein. Microbiology (United Kingdom), 2007, 153, 1653-1663.	1.8	8
229	False Positive Results of Mitochondrial DNA Depletion/Deletion due to Single Nucleotide Substitutions Causing Appearance of Additional Pvull Restriction Sites. Diagnostic Molecular Pathology, 2007, 16, 116-120.	2.1	2
230	Electric Bio-Chips for Rapid and Quantitative Detection of Specific Biological Materials Current Nanoscience, 2007, 3, 129-133.	1.2	1
231	Rapid deterioration of a patient with mucopolysaccharidosis type I during interruption of enzyme replacement therapy. American Journal of Medical Genetics, Part A, 2007, 143A, 1925-1927.	1.2	21
232	Impaired mutagenic activities of MPDP+ (1-methyl-4-phenyl-2,3-dihydropyridinium) and MPP+ (1-methyl-4-phenylpyridinium) due to their interactions with methylxanthines. Bioorganic and Medicinal Chemistry, 2007, 15, 5150-5157.	3.0	15
233	Effective inhibition of lytic development of bacteriophages lambda, P1 and T4 by starvation of their host, Escherichia coli. BMC Biotechnology, 2007, 7, 13.	3.3	54
234	Evaluation of biofilm production and prevalence of theicaDgene in methicillin-resistant and methicillin-susceptibleStaphylococcus aureusstrains isolated from patients with nosocomial infections and carriers. FEMS Immunology and Medical Microbiology, 2007, 50, 375-379.	2.7	46

#	Article	IF	CITATIONS
235	Adenosine monophosphate-induced amplification of ColE1 plasmid DNA in Escherichia coli. Plasmid, 2007, 57, 265-274.	1.4	5
236	The use of a novel Vibrio harveyi luminescence mutagenicity assay in testing marine water for the presence of mutagenic pollution. Marine Pollution Bulletin, 2007, 54, 808-814.	5.0	6
237	Assessment of antibacterial effects of flavonoids by estimation of generation times in liquid bacterial cultures. Biologia (Poland), 2007, 62, 132-135.	1.5	19
238	Mechanisms of physiological regulation of RNA synthesis in bacteria: new discoveries breaking old schemes. Journal of Applied Genetics, 2007, 48, 281-294.	1.9	16
239	Substrate deprivation therapy: a new hope for patients suffering from neuronopathic forms of inherited lysosomal storage diseases. Journal of Applied Genetics, 2007, 48, 383-388.	1.9	50
240	The use of theVibrio harveyi luminescence mutagenicity assay as a rapid test for preliminary assessment of mutagenic pollution of marine sediments. Journal of Applied Genetics, 2007, 48, 409-412.	1.9	5
241	Switch from \hat{I}_j to \hat{I}_f replication of bacteriophage \hat{I} » DNA: factors involved in the process and a model for its regulation. Molecular Genetics and Genomics, 2007, 278, 65-74.	2.1	20
242	The use of marine bacteria in mutagenicity assays. Polish Journal of Microbiology, 2007, 56, 227-31.	1.7	5
243	Effects of the presence of ColE1 plasmid DNA in Escherichia coli on the host cell metabolism. Microbial Cell Factories, 2006, 5, 34.	4.0	78
244	Direct addition of cultures of tester bacteria into semi-permeable membrane devices (SPMDs) as a modified procedure for preliminary detection of mutagenic pollution of the marine environment by use of microbiological mutagenicity assays. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2006, 611, 17-24.	1.7	5
245	Replication and amplification of λ plasmids in Escherichia coli during amino acid starvation and limitation. FEMS Microbiology Letters, 2006, 153, 151-157.	1.8	6
246	Phosphorylation ofEscherichia colipoly(A) polymerase I and effects of this modification on the enzyme activity. FEMS Microbiology Letters, 2006, 261, 118-122.	1.8	8
247	Genistein-mediated inhibition of glycosaminoglycan synthesis as a basis for gene expression-targeted isoflavone therapy for mucopolysaccharidoses. European Journal of Human Genetics, 2006, 14, 846-852.	2.8	161
248	Mutagenic activity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Journal of Applied Genetics, 2006, 47, 85-87.	1.9	9
249	Differential antibacterial activity of genistein arising from global inhibition of DNA, RNA and protein synthesis in some bacterial strains. Archives of Microbiology, 2006, 184, 271-278.	2.2	121
250	DNA replication defect in the Escherichia coli cgtA(ts) mutant arising from reduced DnaA levels. Archives of Microbiology, 2006, 185, 340-347.	2.2	20
251	Transcription start sites in the promoter region of the Escherichia coli pcnB (plasmid copy number) gene coding for poly(A) polymerase I. Plasmid, 2006, 55, 169-172.	1.4	13
252	Genomic DNA hybridization as an attempt to evaluate phylogenetic relationships of Ostracoda. Crustaceana, 2006, 79, 1309-1322.	0.3	1

#	Article	IF	CITATIONS
253	Stimulation of the λ p R promoter by Escherichia coli SeqA protein requires downstream GATC sequences and involves late stages of transcription initiation. Microbiology (United Kingdom), 2006, 152, 2985-2992.	1.8	7
254	Expression of Genes Coding for GerA and GerK Spore Germination Receptors Is Dependent on the Protein Phosphatase PrpE. Journal of Bacteriology, 2006, 188, 4373-4383.	2.2	12
255	tRNA-dependent cleavage of the ColE1 plasmid-encoded RNA I. Microbiology (United Kingdom), 2006, 152, 3467-3476.	1.8	15
256	Bioluminescence-mediated stimulation of photoreactivation in bacteria. FEMS Microbiology Letters, 2005, 250, 105-110.	1.8	26
257	A bacterial model for studying effects of human mutations in vivo: Escherichia coli strains mimicking a common polymorphism in the human MTHFR gene. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2005, 578, 175-186.	1.0	8
258	Atypical microbial infections of digestive tract may contribute to diarrhea in mucopolysaccharidosis patients: a MPS I case study. BMC Pediatrics, 2005, 5, 9.	1.7	9
259	Changes in hair morphology of mucopolysaccharidosis I patients treated with recombinant human α-L-iduronidase (laronidase, Aldurazyme). American Journal of Medical Genetics, Part A, 2005, 139A, 199-203.	1.2	19
260	Transcription in the prpC-yloQ region in Bacillus subtilis. Archives of Microbiology, 2005, 183, 421-430.	2.2	11
261	Sensitivity of dark mutants of various strains of luminescent bacteria to reactive oxygen species. Archives of Microbiology, 2005, 183, 203-208.	2.2	22
262	Localization of Escherichia coli poly(A) polymerase I in cellular membrane. Biochemical and Biophysical Research Communications, 2005, 329, 598-602.	2.1	19
263	Genetic Switches During Bacteriophage λ Development. Progress in Molecular Biology and Translational Science, 2005, 79, 1-48.	1.9	74
264	Methylxanthines (caffeine, pentoxifylline and theophylline) decrease the mutagenic effect of daunomycin, doxorubicin and mitoxantrone Acta Biochimica Polonica, 2005, 52, 923-926.	0.5	34
265	The Obg subfamily of bacterial GTP-binding proteins: essential proteins of largely unknown functions that are evolutionarily conserved from bacteria to humans Acta Biochimica Polonica, 2005, 52, 35-43.	0.5	22
266	Optimisation of the microbiological mutagenicity assay based on genetically modified Vibrio harveyi strains. Journal of Applied Genetics, 2005, 46, 241-6.	1.9	17
267	Methylxanthines (caffeine, pentoxifylline and theophylline) decrease the mutagenic effect of daunomycin, doxorubicin and mitoxantrone. Acta Biochimica Polonica, 2005, 52, 923-6.	0.5	6
268	A modified procedure for quantitative analysis of mtDNA, detecting mtDNA depletion. Journal of Applied Genetics, 2005, 46, 423-8.	1.9	3
269	Role of the RNA polymerase subunits in CII-dependent activation of the bacteriophage pE promoter: identification of important residues and positioning of the C-terminal domains. Nucleic Acids Research, 2004, 32, 834-841.	14.5	24
270	Direct Stimulation of the λpaQ Promoter by the Transcription Effector Guanosine-3â€2,5â€2-(bis)pyrophosphate in a Defined in Vitro System. Journal of Biological Chemistry, 2004, 279, 19860-19866.	3.4	17

#	Article	IF	CITATIONS
271	TheypdIgene codes for a putative lipoprotein involved in the synthesis of colanic acid inEscherichia coli. FEMS Microbiology Letters, 2004, 235, 265-271.	1.8	20
272	Detection of bacteriophage infection and prophage induction in bacterial cultures by means of electric DNA chips. Analytical Biochemistry, 2004, 324, 84-91.	2.4	29
273	Effects of hydrogen peroxide on light emission by various strains of marine luminescent bacteria. Journal of Basic Microbiology, 2004, 44, 178-184.	3.3	19
274	Bacteriophage contamination: is there a simple method to reduce its deleterious effects in laboratory cultures and biotechnological factories?. Journal of Applied Genetics, 2004, 45, 111-20.	1.9	37
275	The ypdI gene codes for a putative lipoprotein involved in the synthesis of colanic acid in Escherichia coli. FEMS Microbiology Letters, 2004, 235, 265-271.	1.8	4
276	A preliminary study on the phylogeny of the genus Melanelia using nuclear large subunit ribosomal DNA sequences. Lichenologist, 2003, 35, 83-86.	0.8	9
277	Experimental Evidence for the Physiological Role of Bacterial Luciferase in the Protection of Cells Against Oxidative Stress. Current Microbiology, 2003, 47, 379-382.	2.2	59
278	Genetic analysis of bacteriophage ?N-dependent antitermination suggests a possible role for the RNA polymerase ? subunit in facilitating specific functions of NusA and NusE. Archives of Microbiology, 2003, 180, 161-168.	2.2	8
279	The acrAB locus is involved in modulating intracellular acetyl coenzyme A levels in a strain of Escherichia coli CM2555 expressing the chloramphenicol acetyltransferase (cat) gene. Archives of Microbiology, 2003, 180, 362-366.	2.2	4
280	Toxicity of the bacteriophage λ cII gene product to Escherichia coli arises from inhibition of host cell DNA replication. Virology, 2003, 313, 622-628.	2.4	25
281	Role of the cgtA gene function in DNA replication of extrachromosomal elements in Escherichia coli. Plasmid, 2003, 50, 45-52.	1.4	13
282	Alleviation of mutagenic effects of polycyclic aromatic agents (quinacrine mustard, ICR-191 and) Tj ETQq0 0 0 rg Mutagenesis, 2003, 530, 47-57.	gBT /Overl 1.0	ock 10 Tf 50 3 43
283	Stimulation of DNA repair as an evolutionary drive for bacterial luminescence. Luminescence, 2003, 18, 140-144.	2.9	31
284	SeqA-mediated stimulation of a promoter activity by facilitating functions of a transcription activator. Molecular Microbiology, 2003, 47, 1669-1679.	2.5	30
285	Growthâ€rate dependent RNA polyadenylation in <i>Escherichia coli</i> . EMBO Reports, 2003, 4, 172-177.	4.5	42
286	Interplay Between DnaA and SeqA Proteins During Regulation of Bacteriophage λ pR Promoter Activity. Journal of Molecular Biology, 2003, 329, 59-68.	4.2	21
287	A role for bacteriophage T4 rI gene function in the control of phage development during pseudolysogeny and in slowly growing host cells. Research in Microbiology, 2003, 154, 547-552.	2.1	48
288	Involvement of the cgtA gene function in stimulation of DNA repair in Escherichia coli and Vibrio harveyi. Microbiology (United Kingdom), 2003, 149, 1763-1770.	1.8	15

#	Article	IF	CITATIONS
289	The Mechanism of Regulation of Bacteriophage λ pR Promoter Activity by Escherichia coli DnaA Protein. Journal of Biological Chemistry, 2003, 278, 22250-22256.	3.4	21
290	Degradation of mutant initiator protein DnaA204 by proteases ClpP, ClpQ and Lon is prevented when DNA is SeqA-free. Biochemical Journal, 2003, 370, 867-871.	3.7	17
291	Non-random distribution of GATC sequences in regions of promoters stimulated by the SeqA protein of Escherichia coli Acta Biochimica Polonica, 2003, 50, 941-945.	0.5	7
292	The optimal eukaryotic signal for translation initiation from non-AUG codons, present upstream of bacteriophage lambda P cistron, is inactive in Escherichia coli. Cellular and Molecular Biology Letters, 2003, 8, 305-10.	7.0	1
293	Inactivation of theacrAGene Is Partially Responsible for Chloramphenicol Sensitivity ofEscherichia coliCM2555 Strain Expressing the Chloramphenicol Acetyltransferase Gene. Microbial Drug Resistance, 2002, 8, 179-185.	2.0	4
294	Directionality of lambda plasmid DNA replication carried out by the heritable replication complex. Nucleic Acids Research, 2002, 30, 1176-1181.	14.5	8
295	Multiple Mechanisms of Transcription Inhibition by ppGpp at the λp R Promoter. Journal of Biological Chemistry, 2002, 277, 43785-43791.	3.4	31
296	Impaired chromosome partitioning and synchronization of DNA replication initiation in an insertional mutant in the Vibrio harveyi cgtA gene coding for a common GTP-binding protein. Biochemical Journal, 2002, 362, 579.	3.7	25
297	Composition of the λ plasmid heritable replicationcomplex. Biochemical Journal, 2002, 364, 857-862.	3.7	12
298	Impaired chromosome partitioning and synchronization of DNA replication initiation in an insertional mutant in the Vibrio harveyi cgtA gene coding for a common GTP-binding protein. Biochemical Journal, 2002, 362, 579-584.	3.7	33
299	A Role for the Common GTP-Binding Protein in Coupling of Chromosome Replication to Cell Growth and Cell Division. Biochemical and Biophysical Research Communications, 2002, 292, 333-338.	2.1	19
300	Stress responses and replication of plasmids in bacterial cells. Microbial Cell Factories, 2002, 1, 2.	4.0	65
301	A Model for Regulation of ColE1-like Plasmid Replication by Uncharged tRNAs in Amino Acid-Starved Escherichia coli Cells. Plasmid, 2002, 47, 69-78.	1.4	28
302	Comparison of the Ames test and a newly developed assay for detection of mutagenic pollution of marine environments. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2002, 519, 67-74.	1.7	41
303	Ascaridoidea: a simple DNA assay for identification of 11 species infecting marine and freshwater fish, mammals, and fish-eating birds. Experimental Parasitology, 2002, 101, 35-39.	1.2	62
304	λpo, a promoter for oop RNA synthesis, has a role in replication of plasmids derived from bacteriophage λ. Plasmid, 2002, 47, 210-215.	1.4	5
305	Overexpression of the cgtA (yhbZ , obgE) Gene, Coding for an Essential GTP-Binding Protein, Impairs the Regulation of Chromosomal Functions in Escherichia coli. Current Microbiology, 2002, 45, 440-445.	2.2	30
306	Studies on recovery plasmid DNA from Echerichia coli by heat treatment. Process Biochemistry, 2002, 38, 199-206.	3.7	34

#	Article	IF	CITATIONS
307	Title is missing!. Biotechnology Letters, 2002, 24, 121-124.	2.2	7
308	Evolution of lambdoid replication modules. Virus Genes, 2002, 24, 163-171.	1.6	6
309	The cell surface protein Ag43 facilitates phage infection of Escherichia coli in the presence of bile salts and carbohydrates. Microbiology (United Kingdom), 2002, 148, 1533-1542.	1.8	38
310	Differential effects of Kid toxin on two modes of replication of lambdoid plasmids suggest that this toxin acts before, but not after, the assembly of the replication complex. Microbiology (United) Tj ETQq0 0 0 rgBT	/ D øerlock	B O Tf 50 61
311	LUMINESCENCE-STIMULATED DNA REPAIR IN VARIOUS BACTERIAL STRAINS. , 2002, , .		1
312	Modulation of the susceptibility of intestinal bacteria to bacteriophages in response to Ag43 phase variation a hypothesis. Medical Science Monitor, 2002, 8, HY15-8.	1.1	6
313	Induction of light emission by luminescent bacteria treated with UV light and chemical mutagens. Journal of Applied Genetics, 2002, 43, 377-89.	1.9	28
314	Bacterial replication initiator DnaA. Rules for DnaA binding and rolesof DnaA in origin unwinding and helicase loading. Biochimie, 2001, 83, 5-12.	2.6	86
315	Inheritance of the replication complex: a unique or common phenomenon in the control of DNA replication?. Archives of Microbiology, 2001, 175, 86-93.	2.2	23
316	Construction and Use of a Broad-Host-Range Plasmid Expressing the lamB Gene for Utilization of Bacteriophage λ Vectors in the Marine Bacterium Vibrio harveyi. Marine Biotechnology, 2001, 3, 336-345.	2.4	2
317	Inhibition of spontaneous induction of lambdoid prophages in Escherichia coli cultures: simple procedures with possible biotechnological applications. BMC Biotechnology, 2001, 1, 1.	3.3	43
318	SeqA, the <i>Escherichia coli</i> origin sequestration protein, is also a specific transcription factor. Molecular Microbiology, 2001, 40, 1371-1379.	2.5	30
319	Medium design for plasmid DNA production based on stoichiometric model. Process Biochemistry, 2001, 36, 1085-1093.	3.7	41
320	Bacteriophage lambda cIII gene product has an additional function apart from inhibition of cII degradation. Virus Genes, 2001, 22, 127-132.	1.6	7
321	A Plasmid Cloning Vector with Precisely Regulatable Copy Number in Escherichia coli. Molecular Biotechnology, 2001, 17, 193-200.	2.4	8
322	Chloramphenicol-Sensitive Escherichia coli Strain Expressing the Chloramphenicol Acetyltransferase (cat) Gene. Antimicrobial Agents and Chemotherapy, 2001, 45, 3610-3612.	3.2	20
323	The double mechanism of incompatibility between λ plasmids and Escherichia coli dnaA(ts) host cells. Microbiology (United Kingdom), 2001, 147, 1923-1928.	1.8	19
324	A Vibrio harveyi insertional mutant in the cgtA (obg, yhbZ) gene, whose homologues are present in diverse organisms ranging from bacteria to humans and are essential genes in many bacterial species. Microbiology (United Kingdom), 2001, 147, 183-191.	1.8	25

#	Article	IF	CITATIONS
325	Regulation of the switch from early to late bacteriophage λ DNA replication. Microbiology (United) Tj ETQq1 1 0.	784314 rg 1.8	BT /Overloci
326	ON THE FUNCTION AND EVOLUTION OF BACTERIAL LUMINESCENCE. , 2001, , .		7
327	Replication of oriJ-Based Plasmid DNA during the Stringent and Relaxed Responses of Escherichia coli. Plasmid, 2000, 44, 111-126.	1.4	11
328	ClpP/ClpX-mediated degradation of the bacteriophage λ O protein and regulation of λ phage and λ plasmid replication. Archives of Microbiology, 2000, 174, 89-96.	2.2	21
329	Formation and Stability of the Bacteriophage λ Replication Complexes in UV-Irradiated Escherichia coli. Current Microbiology, 2000, 41, 157-160.	2.2	5
330	Architecture of the streptomyces lividans DnaA protein-replication origin complexes. Journal of Molecular Biology, 2000, 298, 351-364.	4.2	34
331	Bacteriophage and host mutants causing the rolling-circle λ DNA replication early after infection. FEBS Letters, 2000, 472, 217-220.	2.8	8
332	Vibrio harveyi bioluminescence plays a role in stimulation of DNA repair We would like to dedicate this paper to the memory of Karol Taylor, who introduced V. harveyi projects to our laboratories Microbiology (United Kingdom), 2000, 146, 283-288.	1.8	59
333	Regulation of Bacteriophage λ Development by Guanosine 5′-Diphosphate-3′-diphosphate. Virology, 1999, 262, 431-441.	2.4	45
334	Replication of Plasmids during Bacterial Response to Amino Acid Starvation. Plasmid, 1999, 41, 1-16.	1.4	59
335	Detection of DNA Replication Intermediates after Two-Dimensional Agarose Gel Electrophoresis Using a Fluorescein-Labeled Probe. Analytical Biochemistry, 1999, 269, 221-222.	2.4	11
336	Regulation of copy number and stability of phage λ derived pTCλ1 plasmid in the light of the dimer/multimer catastrophe hypothesis. FEMS Microbiology Letters, 1999, 176, 489-493.	1.8	6
337	Functional domains of DnaA proteins. Biochimie, 1999, 81, 819-825.	2.6	89
338	Functional domains of DnaA proteins. Biochimie, 1999, 81, 819-825.	2.6	3
339	Replication of Bacteriophage λ in the Escherichia coli dnaA Δrac Hosts. Genetics, 1999, 151, 1633-1635.	2.9	2
340	Polyadenylation of oop RNA in the regulation of bacteriophage λ development. Gene, 1998, 212, 57-65.	2.2	20
341	Rapid degradation of polyadenylated oop RNA. FEBS Letters, 1998, 432, 70-72.	2.8	18
342	Differential inhibition of transcription from σ70- and σ32-dependent promoters by rifampicin. FEBS Letters, 1998, 440, 172-174.	2.8	34

#	ARTICLE	IF	CITATIONS
343	Regulation of Bacteriophage λ Replication. , 1998, , 81-97.		12
344	Amplification of pSC101 replicons in Escherichia coli during amino acid limitation. Journal of Biotechnology, 1997, 58, 205-208.	3.8	8
345	Differential amplification efficiency of pMB1 and p15A (ColE1-type) replicons in Escherichia coli stringent and relaxed strains starved for particular amino acids. Microbiological Research, 1997, 152, 251-255.	5.3	10
346	Replication of plasmids derived from P1, F, R1, R6K and RK2 replicons in amino acid-starvedEscherichia coli stringent and relaxed strains. Journal of Basic Microbiology, 1997, 37, 451-463.	3.3	9
347	Synthesis of the Bacteriophage λP Protein in Amino Acid-StarvedEscherichia coliCells. Biochemical and Biophysical Research Communications, 1996, 222, 612-618.	2.1	5
348	Disassembly of the Coliphage λ Replication Complex Due to Heat Shock Induction of thegroEOperon. Virology, 1996, 217, 594-597.	2.4	14
349	DNA degradation at elevated temperatures after plasmid amplification in amino acid-starved Escherichia coli cells. Biotechnology Letters, 1996, 18, 321-326.	2.2	10
350	Allele specificity of the. Molecular Genetics and Genomics, 1996, 252, 580.	2.4	2
351	Plasmid and host functions required for λ plasmid replication carried out by the inherited replication complex. Molecular Genetics and Genomics, 1995, 247, 501-508.	2.4	24
352	Transcriptional activation of the origin of coliphage λ DNA replication is regulated by the host DnaA initiator function. Gene, 1995, 154, 47-50.	2.2	36
353	Amplification of λ plasmids in Escherichia coli relA mutants. Journal of Biotechnology, 1995, 43, 139-143.	3.8	22
354	Differential Replication of Plasmids during Stringent and Relaxed Response of Escherichia coli. Plasmid, 1994, 32, 89-94.	1.4	38
355	Neither absence nor excess of ? O initiator-digesting ClpXP protease affects ? plasmid or phage replication in Escherichia coli. Molecular Microbiology, 1994, 13, 469-474.	2.5	38
356	Involvement of the Escherichia coli RNA polymerase α subunit in transcriptional activation by the bacteriophage lambda CI and CII proteins. Gene, 1992, 122, 1-7.	2.2	38
357	Stability of coliphage λ DNA replication initiator, the λO protein. Journal of Molecular Biology, 1992, 226, 675-680.	4.2	42
358	Inheritance of the replication complex by one of two daughter copies during λ plasmid replication in Escherichia coli. Journal of Molecular Biology, 1992, 226, 681-688.	4.2	58
359	Stringent control of replication of plasmids derived from coliphage λ. Molecular Genetics and Genomics, 1991, 225, 94-98.	2.4	46

360 Detection of Yersinia pseudotuberculosis in Apollo Butterfly (Parnassius apollo, Lepidoptera:) Tj ETQq0 0 0 rgBT /Overlock 10, Tf 50 62 To

#	Article	IF	CITATIONS
361	Lysogenic Conversion in Bacteria of Importance to the Food Industry. , 0, , 157-198.		12