List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9115909/publications.pdf Version: 2024-02-01

Πρειμά Stochai

#	Article	IF	CITATIONS
1	Targeting nanoparticles to malignant tumors. Biochimica Et Biophysica Acta: Reviews on Cancer, 2022, 1877, 188703.	7.4	15
2	Curcumin nanoformulations to combat aging-related diseases. Ageing Research Reviews, 2021, 69, 101364.	10.9	41
3	Cold nanoclusters elicit homeostatic perturbations in glioblastoma cells and adaptive changes of lysosomes. Theranostics, 2020, 10, 1633-1648.	10.0	21
4	The Cytoskeleton as Regulator of Cell Signaling Pathways. Trends in Biochemical Sciences, 2020, 45, 96-107.	7.5	84
5	Evaluation of Lanthanide-Doped Upconverting Nanoparticles for in Vitro and in Vivo Applications. ACS Applied Bio Materials, 2020, 3, 4358-4369.	4.6	18
6	Nucleolar Organization and Functions in Health and Disease. Cells, 2020, 9, 526.	4.1	21
7	How could gold nanourchins be applied in the clinic?. Nanomedicine, 2020, 15, 829-832.	3.3	6
8	The Co-Chaperone HspBP1 Is a Novel Component of Stress Granules that Regulates Their Formation. Cells, 2020, 9, 825.	4.1	7
9	Exploring near-infrared absorbing nanocarriers to overcome cancer drug resistance. , 2020, 3, 302-333.		4
10	Gold nanourchins induce cellular stress, impair proteostasis and damage RNA. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 22, 102083.	3.3	14
11	Cellular senescence is associated with reorganization of the microtubule cytoskeleton. Cellular and Molecular Life Sciences, 2019, 76, 1169-1183.	5.4	56
12	Abstract LB-024: Inactivation of the 25-hydroxyvitamin D(3)-1(alpha)-hydroxylase gene (CYP27B1): evidence for impaired vitamin D signaling in an MMTV-PYMT mouse model of breast cancer. , 2019, , .		0
13	Gold nanourchins and celastrol reorganize the nucleo- and cytoskeleton of glioblastoma cells. Nanoscale, 2018, 10, 1716-1726.	5.6	19
14	Mitochondrial Oxidative Stress Reduces the Immunopotency of Mesenchymal Stromal Cells in Adults With Coronary Artery Disease. Circulation Research, 2018, 122, 255-266.	4.5	46
15	Inhibition of glioblastoma cell proliferation, invasion, and mechanism of action of a novel hydroxamic acid hybrid molecule. Cell Death Discovery, 2018, 4, 41.	4.7	30
16	Cytoplasmic RNA Granules in Somatic Maintenance. Gerontology, 2018, 64, 485-494.	2.8	21
17	The effects of lanthanide-doped upconverting nanoparticles on cancer cell biomarkers. Nanoscale, 2018, 10, 14464-14471.	5.6	16
18	MSC - targets for atherosclerosis therapy. Aging, 2018, 11, 285-286.	3.1	7

#	Article	IF	CITATIONS
19	Defining the short-term effects of pharmacological 5′-AMP activated kinase modulators on mitochondrial polarization, morphology and heterogeneity. PeerJ, 2018, 6, e5469.	2.0	3
20	Cytoplasmic stress granules: Dynamic modulators of cell signaling and disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 884-895.	3.8	203
21	Data on the association of the nuclear envelope protein Sun1 with nucleoli. Data in Brief, 2017, 13, 115-123.	1.0	4
22	Dissecting the molecular mechanisms that impair stress granule formation in aging cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 475-486.	4.1	38
23	Gold Nanoparticles Impinge on Nucleoli and the Stress Response in MCF7 Breast Cancer Cells. Nanobiomedicine, 2016, 3, 3.	5.7	43
24	Super-resolution microscopy reveals a golden kiss of death to mitochondria. Cell Death Discovery, 2016, 2, 16038.	4.7	1
25	Consistent sex-dependent effects of PKMζ gene ablation and pharmacological inhibition on the maintenance of referred pain. Molecular Pain, 2016, 12, 174480691667534.	2.1	14
26	AMP Kinase Activation Alters Oxidant-Induced Stress Granule Assembly by Modulating Cell Signaling and Microtubule Organization. Molecular Pharmacology, 2016, 90, 460-468.	2.3	27
27	Data in support of 5′AMP-activated protein kinase alpha regulates stress granule biogenesis. Data in Brief, 2015, 4, 54-59.	1.0	5
28	Age, atherosclerosis and type 2 diabetes reduce human mesenchymal stromal cell-mediated T-cell suppression. Stem Cell Research and Therapy, 2015, 6, 140.	5.5	65
29	Off to the Organelles - Killing Cancer Cells with Targeted Gold Nanoparticles. Theranostics, 2015, 5, 357-370.	10.0	148
30	Hsc70 chaperone activity underlies Trio GEF function in axon growth and guidance induced by netrin-1. Journal of Cell Biology, 2015, 210, 817-832.	5.2	34
31	Enhanced killing of SCC17B human head and neck squamous cell carcinoma cells after photodynamic therapy plus fenretinide via the de novo sphingolipid biosynthesis pathway and apoptosis. International Journal of Oncology, 2015, 46, 2003-2010.	3.3	5
32	Impact of Leishmania Infection on Host Macrophage Nuclear Physiology and Nucleopore Complex Integrity. PLoS Pathogens, 2015, 11, e1004776.	4.7	32
33	C6-pyridinium ceramide sensitizes SCC17B human head and neck squamous cell carcinoma cells to photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 2015, 143, 163-168.	3.8	10
34	5′-AMP-activated protein kinase alpha regulates stress granule biogenesis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 1725-1737.	4.1	26
35	Quantitative analysis of the interplay between hsc70 and its co-chaperone HspBP1. PeerJ, 2015, 3, e1530.	2.0	3
36	Ceramide synthase inhibitor fumonisin B1 inhibits apoptotic cell death in SCC17B human head and neck squamous carcinoma cells after Pc4 photosensitization. Photochemical and Photobiological Sciences, 2014, 13, 1621-1627.	2.9	8

#	Article	IF	CITATIONS
37	Nucleoli and Stress Granules: Connecting Distant Relatives. Traffic, 2014, 15, 1179-1193.	2.7	26
38	Gold nanoparticles induce nuclear damage in breast cancer cells, which is further amplified by hyperthermia. Cellular and Molecular Life Sciences, 2014, 71, 4259-4273.	5.4	58
39	Pharmacological AMP Kinase Activators Target the Nucleolar Organization and Control Cell Proliferation. PLoS ONE, 2014, 9, e88087.	2.5	18
40	Implications of multipotent mesenchymal stromal cell aging. Regenerative Medicine, 2013, 8, 211-222.	1.7	4
41	Automated Detection and Quantification of Granular Cell Compartments. Microscopy and Microanalysis, 2013, 19, 617-628.	0.4	17
42	Chaperones and Multitasking Proteins in the Nucleolus. , 2013, , 149-172.		7
43	Identification of Novel Stress Granule Components That Are Involved in Nuclear Transport. PLoS ONE, 2013, 8, e68356.	2.5	39
44	Identification of Novel Markers That Demarcate the Nucleolus during Severe Stress and Chemotherapeutic Treatment. PLoS ONE, 2013, 8, e80237.	2.5	13
45	Nuclear Transport: A Switch for the Oxidative Stress—Signaling Circuit?. Journal of Signal Transduction, 2012, 2012, 1-18.	2.0	56
46	Spatial Proteomics Sheds Light on the Biology of Nucleolar Chaperones. Current Proteomics, 2012, 9, 186-216.	0.3	4
47	AMP kinase: the missing link between type 2 diabetes and neurodegenerative diseases?. Trends in Molecular Medicine, 2011, 17, 613-614.	6.7	10
48	Exploring the Nucleolar Proteome: Novel Concepts for Chaperone Trafficking and Function. Current Proteomics, 2011, 8, 59-82.	0.3	5
49	Computer-based fluorescence quantification: a novel approach to study nucleolar biology. BMC Cell Biology, 2011, 12, 25.	3.0	34
50	Pharmacological AMP-kinase activators have compartment-specific effects on cell physiology. American Journal of Physiology - Cell Physiology, 2011, 301, C1307-C1315.	4.6	18
51	Chaperones and multitasking proteins in the nucleolus: networking together for survival?. Trends in Biochemical Sciences, 2010, 35, 361-367.	7.5	32
52	Nucleolar Targeting of the Chaperone Hsc70 Is Regulated by Stress, Cell Signaling, and a Composite Targeting Signal Which Is Controlled by Autoinhibition. Journal of Biological Chemistry, 2010, 285, 21858-21867.	3.4	31
53	Traffic control at the nuclear pore. Nucleus, 2010, 1, 237-244.	2.2	13
54	Traffic control at the nuclear pore. Nucleus, 2010, 1, 237-244.	2.2	11

#	Article	IF	CITATIONS
55	Dissecting the Signaling Events That Impact Classical Nuclear Import and Target Nuclear Transport Factors. PLoS ONE, 2009, 4, e8420.	2.5	36
56	Oxidative Stress Inhibits Nuclear Protein Export by Multiple Mechanisms That Target FG Nucleoporins and Crm1. Molecular Biology of the Cell, 2009, 20, 5106-5116.	2.1	80
57	Interplay between MEK and PI3 kinase signaling regulates the subcellular localization of protein kinases ERK1/2 and Akt upon oxidative stress. FEBS Letters, 2009, 583, 1987-1993.	2.8	20
58	Dissection of the molecular mechanisms that control the nuclear accumulation of transport factors importin-α and CAS in stressed cells. Cellular and Molecular Life Sciences, 2008, 65, 1756-1767.	5.4	32
59	Oxidative stress mislocalizes and retains transport factor importin-α and nucleoporins Nup153 and Nup88 in nuclei where they generate high molecular mass complexes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 405-418.	4.1	51
60	Analysis of Signaling Events by Combining High-Throughput Screening Technology with Computer-Based Image Analysis. Science Signaling, 2008, 1, pl2.	3.6	28
61	Localization of AMP kinase is regulated by stress, cell density, and signaling through the MEK→ERK1/2 pathway. American Journal of Physiology - Cell Physiology, 2007, 293, C1427-C1436.	4.6	126
62	The localization of nuclear exporters of the importin-β family is regulated by Snf1 kinase, nutrient supply and stress. Biochimica Et Biophysica Acta - Molecular Cell Research, 2007, 1773, 1052-1061.	4.1	21
63	The carrier Msn5p/Kap142p promotes nuclear export of the hsp70 Ssa4p and relocates in response to stress. Molecular Microbiology, 2006, 62, 592-609.	2.5	28
64	The N-terminal domain of the mammalian nucleoporin p62 interacts with other nucleoporins of the FXFG family during interphase. Experimental Cell Research, 2006, 312, 2490-2499.	2.6	12
65	Stress inhibits nucleocytoplasmic shuttling of heat shock protein hsc70. American Journal of Physiology - Cell Physiology, 2005, 289, C1034-C1041.	4.6	74
66	Monitoring the disruption of nuclear envelopes in interphase cells with GFP-beta-galactosidase. Journal of Biomolecular Techniques, 2005, 16, 235-8.	1.5	7
67	Regulated nuclear accumulation of the yeast hsp70 Ssa4p in ethanolâ€stressed cells is mediated by the Nâ€ŧerminal domain, requires the nuclear carrier Nmd5p and protein kinase C. FASEB Journal, 2004, 18, 899-901.	O.5	22
68	Multiple mechanisms promote the inhibition of classical nuclear import upon exposure to severe oxidative stress. Cell Death and Differentiation, 2004, 11, 862-874.	11.2	114
69	Nuclear Accumulation of the Small GTPase Gsp1p Depends on Nucleoporins Nup133p, Rat2p/Nup120p, Nup85p, Nic96p, and the Acetyl-CoA Carboxylase Acc1p. Journal of Biological Chemistry, 2003, 278, 25331-25340.	3.4	18
70	Starvation Promotes Nuclear Accumulation of the hsp70 Ssa4p in Yeast Cells. Journal of Biological Chemistry, 2001, 276, 20261-20266.	3.4	41
71	Heatâ€induced nuclear accumulation of hsc70 proteins is regulated by phosphorylation and inhibited in confluent cells. FASEB Journal, 2001, 15, 1478-1480.	O.5	36
72	Circumferin, a nuclear envelope protein that interacts with nucleoporins and is sensitive to stress. Biochemical Society Transactions, 2000, 28, A443-A443.	3.4	0

#	Article	IF	CITATIONS
73	Stressâ€mediated inhibition of the classical nuclear protein import pathway and nuclear accumulation of the small GTPase Gsp1p. FASEB Journal, 2000, 14, 2130-2132.	0.5	79
74	Nucleocytoplasmic trafficking of proteins: With or without Ran?. BioEssays, 1999, 21, 579-589.	2.5	29
75	Targeting of the mammalian nucleoporin p62 to the nuclear envelope in the yeast <i>Saccharomyces cerevisiae</i> and HeLa cells. Biochemistry and Cell Biology, 1999, 77, 355-365.	2.0	9
76	The small GTPase Gsp1p binds to the repeat domain of the nucleoporin Nsp1p. Biochemical Journal, 1998, 330, 421-427.	3.7	11
77	Diffusion of Proteins Across the Nuclear Envelope of HeLa Cells. BioTechniques, 1998, 24, 668-674.	1.8	24
78	In VivoAnalysis of Nuclear Protein Traffic in Mammalian Cells. Experimental Cell Research, 1997, 236, 346-350.	2.6	26
79	The yeast nucleoporin Nsp1 binds nuclear localization sequences in vitro. Biochemistry and Cell Biology, 1996, 74, 363-372.	2.0	11
80	Monitoring Nuclear Transport in HeLa Cells Using the Green Fluorescent Protein. BioTechniques, 1996, 21, 62-63.	1.8	13
81	Analysis of conserved binding proteins for nuclear localization sequences. Journal of Cell Science, 1993, 104, 89-95.	2.0	21
82	Analysis of conserved binding proteins for nuclear localization sequences. Journal of Cell Science, 1993, 104 (Pt 1), 89-95.	2.0	7
83	A conserved phosphoprotein that specifically binds nuclear localization sequences is involved in nuclear import [published erratum appears in J Cell Biol 1992 Jul;118(1):215]. Journal of Cell Biology, 1992, 117, 473-482.	5.2	67
84	Nucleocytoplasmic traffic of proteins. European Journal of Cell Biology, 1992, 59, 1-11.	3.6	38
85	A yeast protein that binds nuclear localization signals: purification localization, and antibody inhibition of binding activity Journal of Cell Biology, 1991, 113, 1243-1254.	5.2	57
86	Targeting AMPK for Therapeutic Intervention in Type 2 Diabetes. , 0, , .		6
87	Optimized immunofluorescence staining protocol to detect the nucleoporin Nup98 in different subcellular compartments. Protocol Exchange, 0, , .	0.3	3
88	Nuclear envelopes show cell-type specific sensitivity for the permeabilization with digitonin Protocol Exchange, 0, , .	0.3	2
89	Detecting changes in the mitochondrial membrane potential by quantitative fluorescence microscopy. Protocol Exchange, 0, , .	0.3	17