Kemal Sami Korkmaz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9115617/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biology, 2017, 13, 94-162.	9.0	242
2	ldentification of Promoters Bound by c-Jun/ATF2 during Rapid Large-Scale Gene Activation following Genotoxic Stress. Molecular Cell, 2004, 16, 521-535.	9.7	181
3	Continuous fermentative hydrogen production from cheese whey wastewater under thermophilic anaerobic conditions. International Journal of Hydrogen Energy, 2009, 34, 7441-7447.	7.1	181
4	The redox biology network in cancer pathophysiology and therapeutics. Redox Biology, 2015, 5, 347-357.	9.0	118
5	Molecular cloning and characterization of STAMP2, an androgen-regulated six transmembrane protein that is overexpressed in prostate cancer. Oncogene, 2005, 24, 4934-4945.	5.9	117
6	Molecular Cloning and Characterization of STAMP1, a Highly Prostate-specific Six Transmembrane Protein that Is Overexpressed in Prostate Cancer. Journal of Biological Chemistry, 2002, 277, 36689-36696.	3.4	80
7	Early life stressâ€induced histone acetylations correlate with activation of the synaptic plasticity genes Arc and Egr1 in the mouse hippocampus. Journal of Neurochemistry, 2013, 125, 457-464.	3.9	79
8	Comparative Evaluation of Bio-Hydrogen Production From Cheese Whey Wastewater Under Thermophilic and Mesophilic Anaerobic Conditions. International Journal of Green Energy, 2009, 6, 192-200.	3.8	71
9	Determination of polyphenolic constituents and biological activities of bark extracts from different <i>Pinus</i> species. Journal of the Science of Food and Agriculture, 2009, 89, 1339-1345.	3.5	65
10	Trichostatin A causes p53 to switch oxidative-damaged colorectal cancer cells from cell cycle arrest into apoptosis. Journal of Cellular and Molecular Medicine, 2008, 12, 607-621.	3.6	48
11	Egr1 Signaling in Prostate Cancer. Cancer Biology and Therapy, 2003, 2, 615-620.	3.4	47
12	Full-length cDNA sequence and genomic organization of human NKX3A — alternative forms and regulation by both androgens and estrogens. Gene, 2000, 260, 25-36.	2.2	46
13	Inflammationâ€mediated abrogation of androgen signaling: An in vitro model of prostate cell inflammation. Molecular Carcinogenesis, 2014, 53, 85-97.	2.7	43
14	Distinctly Different Gene Structure of KLK4/KLK-L1/Prostase/ARM1 Compared with Other Members of the Kallikrein Family: Intracellular Localization, Alternative cDNA Forms, and Regulation by Multiple Hormones. DNA and Cell Biology, 2001, 20, 435-445.	1.9	42
15	ANALYSIS OF ANDROGEN REGULATED HOMEOBOX GENE NKX3.1 DURING PROSTATE CARCINOGENESIS. Journal of Urology, 2004, 172, 1134-1139.	0.4	40
16	Cytotoxic Naphthoquinones from <i>Alkanna cappadocica</i> . Journal of Natural Products, 2010, 73, 860-864.	3.0	32
17	ALCAPs induce mitochondrial apoptosis and activate DNA damage response by generating ROS and inhibiting topoisomerase I enzyme activity in K562 leukemia cell line. Biochemical and Biophysical Research Communications, 2011, 409, 738-744.	2.1	31
18	TNFα-Mediated Loss of β-Catenin/E-Cadherin Association and Subsequent Increase in Cell Migration Is Partially Restored by NKX3.1 Expression in Prostate Cells. PLoS ONE, 2014, 9, e109868.	2.5	30

#	Article	IF	CITATIONS
19	NKX3.1 Expression Is Lost in Testicular Germ Cell Tumors. American Journal of Pathology, 2003, 163, 2149-2154.	3.8	28
20	Ubiquitously Expressed Hematological and Neurological Expressed 1 Downregulates Akt-Mediated GSK3β Signaling, and Its Knockdown Results in Deregulated G2/M Transition in Prostate Cells. DNA and Cell Biology, 2011, 30, 419-429.	1.9	28
21	Androgen regulated HN1 leads proteosomal degradation of androgen receptor (AR) and negatively influences AR mediated transactivation in prostate cells. Molecular and Cellular Endocrinology, 2012, 350, 107-117.	3.2	28
22	HN1 Negatively Influences the β atenin/E adherin Interaction, and Contributes to Migration in Prostate Cells. Journal of Cellular Biochemistry, 2015, 116, 170-178.	2.6	28
23	A new 5,6-dihydro-2-pyrone derivative from Phomopsis amygdali, an endophytic fungus isolated from hazelnut (Corylus avellana). Phytochemistry Letters, 2014, 7, 93-96.	1.2	24
24	Determination of Naphthazarin Derivatives in Endemic Turkish Alkanna Species by Reversed Phase High Performance Liquid Chromatography. Planta Medica, 2007, 73, 267-272.	1.3	20
25	DNA damage response (DDR) via NKX3.1 expression in prostate cells. Journal of Steroid Biochemistry and Molecular Biology, 2014, 141, 26-36.	2.5	20
26	HOXB13 contributes to G1/S and G2/M checkpoint controls in prostate. Molecular and Cellular Endocrinology, 2014, 383, 38-47.	3.2	18
27	Inflammation contributes to NKX3.1 loss and augments DNA damage but does not alter the DNA damage response via increased SIRT1 expression. Journal of Inflammation, 2015, 12, 12.	3.4	16
28	An Efficient Procedure for Cloning Hormone-Responsive Genes from a Specific Tissue. DNA and Cell Biology, 2000, 19, 499-506.	1.9	14
29	Determination of Naphthazarin Derivatives in 16 Alkanna Species by RP-LC Using UV and MS for Detection. Chromatographia, 2009, 70, 963-967.	1.3	11
30	NKX3.1 contributes to S phase entry and regulates DNA damage response (DDR) in prostate cancer cell lines. Biochemical and Biophysical Research Communications, 2011, 414, 123-128.	2.1	8
31	Cycloartane-type sapogenol derivatives inhibit NFκB activation as chemopreventive strategy for inflammation-induced prostate carcinogenesis. Steroids, 2018, 135, 9-20.	1.8	8
32	Synthesis and Topoisomerase I inhibitory properties of klavuzon derivatives. Bioorganic Chemistry, 2017, 71, 275-284.	4.1	7
33	Oxidative DNA Damage-Mediated Genomic Heterogeneity Is Regulated by NKX3.1 in Prostate Cancer. Cancer Investigation, 2019, 37, 113-126.	1.3	7
34	Automated Cell-Based Quantitation of 8-OHdG Damage. Methods in Molecular Biology, 2016, 1516, 299-308.	0.9	5
35	3D Cell Culture Model for Prostate Cancer Cells to Mimic Inflammatory Microenvironment. Proceedings (mdpi), 2018, 2, 1555.	0.2	4
36	HN1 interacts with Î ³ -tubulin to regulate centrosomes in advanced prostate cancer cells. Cell Cycle, 2021, 20, 1723-1744.	2.6	2

Kemal Sami Korkmaz

#	Article	IF	CITATIONS
37	Two Brothers with a 7.0 kb Gene Deletion Associated with Isolated Growth Hormone Deficiency Type 1A. Journal of Pediatric Endocrinology and Metabolism, 1996, 9, 423-7.	0.9	1
38	Identification of Promoters Bound by c-Jun/ATF2 during Rapid Large-Scale Gene Activation following Genotoxic Stress. Molecular Cell, 2005, 17, 161.	9.7	1
39	NKX3.1 binding to GPX2, QSCN6, SOD1, and SOD2 promoters contributes to antioxidant response regulation via transactivation. Turkish Journal of Biology, 2014, 38, 640-647.	0.8	1
40	Inflammatory Microenvironment-Mediated E-Cadherin Decrease Induces Migration in LNCaPs. Proceedings (mdpi), 2018, 2, .	0.2	0
41	OGG1 Does not Interact with NKX3.1 and AR to Repair 8-OHdG Base Damage in LNCaP Cells. Proceedings (mdpi), 2018, 2, .	0.2	0
42	Nutlin3a Contributes to the Cytoplasmic Retention of Androgen Receptor. Proceedings (mdpi), 2018, 2, .	0.2	0