Melanie J Cocco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9115277/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Markov state models and NMR uncover an overlooked allosteric loop in p53. Chemical Science, 2021, 12, 1891-1900.	7.4	22
2	Improved protection against Chlamydia muridarum using the native major outer membrane protein trapped in Resiquimod-carrying amphipols and effects in protection with addition of a Th1 (CpG-1826) and a Th2 (Montanide ISA 720) adjuvant. Vaccine, 2020, 38, 4412-4422.	3.8	9
3	Co-delivery of amphipol-conjugated adjuvant with antigen, and adjuvant combinations, enhance immune protection elicited by a membrane protein-based vaccine against a mucosal challenge with Chlamydia. Vaccine, 2018, 36, 6640-6649.	3.8	12
4	1H, 13C, and 15N backbone resonance assignments of the full-length 40ÂkDa S. acidocaldarius Y-family DNA polymerase, dinB homolog. Biomolecular NMR Assignments, 2015, 9, 441-445.	0.8	2
5	Long-Term Stability of a Vaccine Formulated with the Amphipol-Trapped Major Outer Membrane Protein from Chlamydia trachomatis. Journal of Membrane Biology, 2014, 247, 1053-1065.	2.1	15
6	Increased Immunoaccessibility of MOMP Epitopes in a Vaccine Formulated with Amphipols May Account for the Very Robust Protection Elicited against a Vaginal Challenge with <i>Chlamydia muridarum</i> . Journal of Immunology, 2014, 192, 5201-5213.	0.8	47
7	Glutamate provides a key structural contact between reticulon-4 (Nogo-66) and phosphocholine. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 2350-2356.	2.6	1
8	Multiple Conformations of the Cytidine Repressor DNA-Binding Domain Coalesce to One upon Recognition of a Specific DNA Surface. Biochemistry, 2011, 50, 6622-6632.	2.5	21
9	Amphipols From A to Z. Annual Review of Biophysics, 2011, 40, 379-408.	10.0	226
10	The Scope of Phage Display for Membrane Proteins. Journal of Molecular Biology, 2011, 414, 499-510.	4.2	14
11	Amphipols stabilize the Chlamydia major outer membrane protein and enhance its protective ability as a vaccine. Vaccine, 2011, 29, 4623-4631.	3.8	54
12	Protein folding at the membrane interface, the structure of Nogo-66 requires interactions with a phosphocholine surface. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6847-6851.	7.1	22
13	ICP27 Phosphorylation Site Mutants Display Altered Functional Interactions with Cellular Export Factors Aly/REF and TAP/NXF1 but Are Able To Bind Herpes Simplex Virus 1 RNA. Journal of Virology, 2010, 84, 2212-2222.	3.4	22
14	Three Arginine Residues within the RGG Box Are Crucial for ICP27 Binding to Herpes Simplex Virus 1 GC-Rich Sequences and for Efficient Viral RNA Export. Journal of Virology, 2010, 84, 6367-6376.	3.4	21
15	The HSV-1 ICP27 RGG box specifically binds flexible, GC-rich sequences but not G-quartet structures. Nucleic Acids Research, 2009, 37, 7290-7301.	14.5	28
16	Electropositive Charge in α-Defensin Bactericidal Activity: Functional Effects of Lys-for-Arg Substitutions Vary with the Peptide Primary Structure. Infection and Immunity, 2009, 77, 5035-5043.	2.2	57
17	pH Dependence of Sphingosine Aggregation. Biophysical Journal, 2009, 96, 2727-2733.	0.5	43
18	Chemical shift mapping of γÎ′ resolvase dimer and activated tetramer: Mechanistic implications for DNA strand exchange. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2008, 1784, 2086-2092.	2.3	2

MELANIE J COCCO

#	Article	IF	CITATIONS
19	Structure and Stability Changes of Human IgG1 Fc as a Consequence of Methionine Oxidation. Biochemistry, 2008, 47, 5088-5100.	2.5	262
20	Synthesis, Structure, and Activities of an Oral Mucosal α-Defensin from Rhesus Macaque. Journal of Biological Chemistry, 2008, 283, 35869-35877.	3.4	7
21	Structural and Functional Analyses of the Major Outer Membrane Protein of Chlamydia trachomatis. Journal of Bacteriology, 2007, 189, 6222-6235.	2.2	75
22	Assignment of 1H, 13C and 15N resonances of the reduced human IgG1 CH3 domain. Biomolecular NMR Assignments, 2007, 1, 93-94.	0.8	4
23	Assignment of backbone 1H, 13C and 15N resonances of human IgG1 Fc (51.4ÂkDa). Biomolecular NMR Assignments, 2007, 1, 233-235.	0.8	14
24	Exploring the interaction between the protein kinase A catalytic subunit and caveolin-1 scaffolding domain with shotgun scanning, oligomer complementation, NMR, and docking. Protein Science, 2006, 15, 478-486.	7.6	23
25	Flexibility and Adaptability in Binding of E. coli Cytidine Repressor to Different Operators Suggests a Role in Differential Gene Regulation. Journal of Molecular Biology, 2006, 362, 271-286.	4.2	22
26	Implications of structures of synaptic tetramers of ÂÂ resolvase for the mechanism of recombination. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10642-10647.	7.1	47
27	Matrix Metalloproteinase-7 Activation of Mouse Paneth Cell Pro-α-defensins. Journal of Biological Chemistry, 2006, 281, 28932-28942.	3.4	39
28	Determinants of Mouse Alphaâ€Ðefensin Bactericidal Activity. FASEB Journal, 2006, 20, A649.	0.5	0
29	Differential Effects on Human Immunodeficiency Virus Type 1 Replication by α-Defensins with Comparable Bactericidal Activities. Journal of Virology, 2004, 78, 11622-11631.	3.4	45
30	Protein design to understand peptide ligand recognition by tetratricopeptide repeat proteins. Protein Engineering, Design and Selection, 2004, 17, 399-409.	2.1	67
31	Design of Stable α-Helical Arrays from an Idealized TPR Motif. Structure, 2003, 11, 497-508.	3.3	256
32	Specific interactions of distamycin with G-quadruplex DNA. Nucleic Acids Research, 2003, 31, 2944-2951.	14.5	86
33	Mutations in the B1 domain of protein G that delay the onset of amyloid fibril formation in vitro. Protein Science, 2003, 12, 567-576.	7.6	13
34	Conversion of Phospholamban into a Soluble Pentameric Helical Bundleâ€. Biochemistry, 2001, 40, 6636-6645.	2.5	37
35	Interhelical hydrogen bonding drives strong interactions in membrane proteins. Nature Structural Biology, 2000, 7, 154-160.	9.7	226
36	Direct Detection of Monovalent Metal Ion Binding to a DNA G-quartet by205Tl NMR. Journal of the American Chemical Society, 2000, 122, 3240-3241.	13.7	78

Melanie J Cocco

#	Article	IF	CITATIONS
37	The native state of apomyoglobin described by proton NMR spectroscopy: The A-B-C-H interface of wild-type sperm whale apomyoglobin. Proteins: Structure, Function and Bioinformatics, 1996, 25, 267-285.	2.6	33
38	The native state of apomyoglobin described by proton NMR spectroscopy: The Aâ€Bâ€Gâ€H interface of wildâ€type sperm whale apomyoglobin. Proteins: Structure, Function and Bioinformatics, 1996, 25, 267-285.	2.6	44
39	Mixed disulfide intermediates during the reduction of disulfides by Escherichia coli thioredoxin. Biochemistry, 1995, 34, 11807-11813.	2.5	41
40	The native state of apomyoglobin described by proton NMR spectroscopy: Interaction with the paramagnetic probe HyTEMPO and the fluorescent dye ANS. Protein Science, 1994, 3, 267-281.	7.6	66
41	Structural comparison of apomyoglobin and metaquomyoglobin: pH titration of histidines by NMR spectroscopy. Biochemistry, 1992, 31, 6481-6491.	2.5	91
42	Histidine 82 influences heme orientational isomerism in sperm whale myoglobin. Long-range effect due to mutation of a conserved residue. Journal of the American Chemical Society, 1992, 114, 11000-11001.	13.7	11
43	Characterization of hydrophobic cores in apomyoglobin: a proton NMR spectroscopy study. Biochemistry, 1990, 29, 11067-11072.	2.5	75
44	Structural features of the protoporphyrin-apomyoglobin complex: a proton NMR spectroscopy study. Biochemistry, 1990, 29, 11057-11067.	2.5	29