
Muralidhara Ramachandra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9115043/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	BIOCHEMICAL, CELLULAR, AND PHARMACOLOGICAL ASPECTS OF THE MULTIDRUG TRANSPORTER. Annual Review of Pharmacology and Toxicology, 1999, 39, 361-398.	9.4	1,940
2	HIV-1 Protease Inhibitors Are Substrates for the MDR1 Multidrug Transporter. Biochemistry, 1998, 37, 3594-3601.	2.5	482
3	Association between NS3 and NS5 Proteins of Dengue Virus Type 2 in the Putative RNA Replicase Is Linked to Differential Phosphorylation of NS5. Journal of Biological Chemistry, 1995, 270, 19100-19106.	3.4	281
4	Human P-Glycoprotein Exhibits Reduced Affinity for Substrates during a Catalytic Transition State. Biochemistry, 1998, 37, 5010-5019.	2.5	245
5	Both ATP Sites of Human P-Clycoprotein Are Essential but Not Symmetric. Biochemistry, 1999, 38, 13887-13899.	2.5	137
6	Re-engineering adenovirus regulatory pathways to enhance oncolytic specificity and efficacy. Nature Biotechnology, 2001, 19, 1035-1041.	17.5	120
7	Mechanism of Action of Human P-glycoprotein ATPase Activity. Journal of Biological Chemistry, 1998, 273, 16631-16634.	3.4	111
8	Anti-PD-L1 peptide improves survival in sepsis. Journal of Surgical Research, 2017, 208, 33-39.	1.6	92
9	Effect of ABC transporters on HIVâ€1 infection: inhibition of virus production by the <i>MDR1</i> transporter. FASEB Journal, 2000, 14, 516-522.	0.5	87
10	Small-Molecule Immune Checkpoint Inhibitors Targeting PD-1/PD-L1 and Other Emerging Checkpoint Pathways. BioDrugs, 2018, 32, 481-497.	4.6	79
11	PD-1 derived CA-170 is an oral immune checkpoint inhibitor that exhibits preclinical anti-tumor efficacy. Communications Biology, 2021, 4, 699.	4.4	79
12	Evaluation of the Effects of Mitragyna speciosa Alkaloid Extract on Cytochrome P450 Enzymes Using a High Throughput Assay. Molecules, 2011, 16, 7344-7356.	3.8	72
13	Acute hepatotoxicity of oncolytic adenoviruses in mouse models is associated with expression of wild-type E1a and induction of TNF-α. Virology, 2004, 328, 52-61.	2.4	51
14	A Rationally Designed Peptide Antagonist of the PD-1 Signaling Pathway as an Immunomodulatory Agent for Cancer Therapy. Molecular Cancer Therapeutics, 2019, 18, 1081-1091.	4.1	43
15	Specific Depletion of Human Anti-adenovirus Antibodies Facilitates Transduction in an in Vivo Model for Systemic Gene Therapy. Molecular Therapy, 2001, 3, 768-778.	8.2	42
16	[33] Functional expression of human P-glycoprotein from plasmids using vaccinia virus-bacteriophage T7 RNA polymerase system. Methods in Enzymology, 1998, 292, 456-473.	1.0	38
17	Overexpression of adenovirus E3-11.6K protein induces cell killing by both caspase-dependent and caspase-independent mechanisms. Virology, 2004, 326, 240-249.	2.4	34
18	Selective Expression of Nonsecreted Interferon by an Adenoviral Vector Confers Antiproliferative and Antiviral Properties and Causes Reduction of Tumor Growth in Nude Mice. Journal of Interferon and Cytokine Research, 2001, 21, 399-408.	1.2	27

#	Article	IF	CITATIONS
19	Discovery of azetidine based ene-amides as potent bacterial enoyl ACP reductase (FabI) inhibitors. European Journal of Medicinal Chemistry, 2014, 84, 382-394.	5.5	27
20	Discovery of Pyridyl Bis(oxy)dibenzimidamide Derivatives as Selective Matriptase Inhibitors. ACS Medicinal Chemistry Letters, 2013, 4, 1152-1157.	2.8	26
21	3-Alkoxy-pyrrolo[1,2- <i>b</i>]pyrazolines as Selective Androgen Receptor Modulators with Ideal Physicochemical Properties for Transdermal Administration. Journal of Medicinal Chemistry, 2014, 57, 7396-7411.	6.4	25
22	Small Molecule Agents Targeting PD-1 Checkpoint Pathway for Cancer Immunotherapy: Mechanisms of Action and Other Considerations for Their Advanced Development. Frontiers in Immunology, 2022, 13, 752065.	4.8	21
23	ODM-203, a Selective Inhibitor of FGFR and VEGFR, Shows Strong Antitumor Activity, and Induces Antitumor Immunity. Molecular Cancer Therapeutics, 2019, 18, 28-38.	4.1	20
24	An oncolytic adenovirus expressing soluble transforming growth factor-Î ² type II receptor for targeting breast cancer: in vitro evaluation. Molecular Cancer Therapeutics, 2006, 5, 367-373.	4.1	18
25	Discovery of 7-azaindole based anaplastic lymphoma kinase (ALK) inhibitors: Wild type and mutant (L1196M) active compounds with unique binding mode. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 4911-4918.	2.2	18
26	Structure-guided discovery of 1,3,5 tri-substituted benzenes as potent and selective matriptase inhibitors exhibiting in vivo antitumor efficacy. Bioorganic and Medicinal Chemistry, 2014, 22, 3187-3203.	3.0	17
27	Inefficient killing of quiescent human epithelial cells by replicating adenoviruses: potential implications for their use as oncolytic agents. Cancer Gene Therapy, 2005, 12, 691-698.	4.6	16
28	Biochemical Characterization of a Temperature-Sensitive Adenovirus DNA Polymerase. Virology, 1994, 205, 364-370.	2.4	15
29	Matching complementing functions of transformed cells with stable expression of selected viral genes for production of E1-deleted adenovirus vectors. Virology, 2006, 345, 220-230.	2.4	14
30	A novel peptide therapeutic targeting PD1 immune checkpoint with equipotent antagonism of both ligands and a potential for better management of immune-related adverse events. , 2013, 1, O24.		14
31	AFN-1252 is a potent inhibitor of enoyl-ACP reductase from B urkholderia pseudomallei -Crystal structure, mode of action, and biological activity. Protein Science, 2015, 24, 832-840.	7.6	11
32	Discovery of O-(3-carbamimidoylphenyl)-l-serine amides as matriptase inhibitors using a fragment-linking approach. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 616-620.	2.2	11
33	The Multi-kinase Inhibitor Debio 0617B Reduces Maintenance and Self-renewal of Primary Human AML CD34+ Stem/Progenitor Cells. Molecular Cancer Therapeutics, 2017, 16, 1497-1510.	4.1	11
34	Small-molecule antagonists of the immune checkpoint pathways: concept to clinic. Future Medicinal Chemistry, 2017, 9, 1305-1308.	2.3	11
35	Abstract 4861: Oral immune checkpoint antagonists targeting PD-L1/VISTA or PD-L1/Tim3 for cancer therapy. Cancer Research, 2016, 76, 4861-4861.	0.9	11
36	Structure-guided discovery of 2-aryl/pyridin-2-yl-1H-indole derivatives as potent and selective hepsin inhibitors. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5309-5314.	2.2	10

#	Article	IF	CITATIONS
37	Peptide and peptide-inspired checkpoint inhibitors: Protein fragments to cancer immunotherapy. Medicine in Drug Discovery, 2020, 8, 100073.	4.5	10
38	Enhanced Apoptotic Activity of a p53 Variant in Tumors Resistant to Wild-Type p53 Treatment. Molecular Therapy, 2001, 4, 5-12.	8.2	7
39	Debio 0617B Inhibits Growth of STAT3-Driven Solid Tumors through Combined Inhibition of JAK, SRC, and Class III/V Receptor Tyrosine Kinases. Molecular Cancer Therapeutics, 2016, 15, 2334-2343.	4.1	7
40	Abstract A36: CA-170, an oral small molecule PD-L1 and VISTA immune checkpoint antagonist, promotes T cell immune activation and inhibits tumor growth in pre-clinical models of cancer. , 2017, , .		6
41	Ternary complex formation of AFNâ€1252 with Acinetobacter baumannii Fabl and NADH: Crystallographic and biochemical studies. Chemical Biology and Drug Design, 2020, 96, 704-713.	3.2	5
42	[32] Recombinant vaccinia virus vectors for functional expression of P-glycoprotein in mammalian cells. Methods in Enzymology, 1998, 292, 441-455.	1.0	4
43	Abstract 1650: Targeting CD47- SIRPÎ \pm interaction by novel peptide-based antagonists. , 2017, , .		1
44	Replicating Adenoviral Vectors for Cancer Therapy. Drugs and the Pharmaceutical Sciences, 2003, , .	0.1	0
45	Development of Oncolytic Adenoviruses. , 2005, , 211-233.		Ο