David E Clemmer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9115035/publications.pdf

Version: 2024-02-01

268 papers 16,302 citations

14644 66 h-index 24232 110 g-index

276 all docs

276 docs citations

276 times ranked

6931 citing authors

#	Article	IF	CITATIONS
1	Ion Mobility Measurements and their Applications to Clusters and Biomolecules. , 1997, 32, 577-592.		671
2	Naked Protein Conformations: Cytochrome c in the Gas Phase. Journal of the American Chemical Society, 1995, 117, 10141-10142.	6.6	466
3	Biomolecule Analysis by Ion Mobility Spectrometry. Annual Review of Analytical Chemistry, 2008, 1 , 293-327.	2.8	437
4	Protein Structurein Vacuo: Â Gas-Phase Conformations of BPTI and Cytochromec. Journal of the American Chemical Society, 1997, 119, 2240-2248.	6.6	409
5	Three-Dimensional Ion Mobility/TOFMS Analysis of Electrosprayed Biomolecules. Analytical Chemistry, 1998, 70, 2236-2242.	3.2	330
6	Anhydrous Protein Ions. Chemical Reviews, 1999, 99, 3037-3080.	23.0	314
7	Activation of hydrogen and methane by thermalized FeO+ in the gas phase as studied by multiple mass spectrometric techniques. International Journal of Mass Spectrometry and Ion Processes, 1997, 161, 175-191.	1.9	291
8	High-resolution ion mobility measurements. Review of Scientific Instruments, 1997, 68, 1122-1129.	0.6	286
9	An IMSâ^'IMS Analogue of MSâ^'MS. Analytical Chemistry, 2006, 78, 4161-4174.	3.2	251
10	Disulfide-Intact and -Reduced Lysozyme in the Gas Phase:Â Conformations and Pathways of Folding and Unfolding. Journal of Physical Chemistry B, 1997, 101, 3891-3900.	1.2	224
11	Conformer-dependent proton-transfer reactions of ubiquitin ions. Journal of the American Society for Mass Spectrometry, 1997, 8, 954-961.	1.2	219
12	ESI/Ion Trap/Ion Mobility/Time-of-Flight Mass Spectrometry for Rapid and Sensitive Analysis of Biomolecular Mixtures. Analytical Chemistry, 1999, 71, 291-301.	3.2	193
13	H/D Exchange Levels of Shape-Resolved Cytochrome c Conformers in the Gas Phase. Journal of the American Chemical Society, 1997, 119, 3558-3566.	6.6	192
14	A database of 660 peptide ion cross sections: Use of intrinsic size parameters for bona fide predictions of cross sections. Journal of the American Society for Mass Spectrometry, 1999, 10, 1188-1211.	1.2	191
15	IMSâ^'IMS and IMSâ^'IMSâ^'IMS/MS for Separating Peptide and Protein Fragment Ions. Analytical Chemistry, 2006, 78, 2802-2809.	3.2	183
16	Mapping the human plasma proteome by SCX-LC-IMS-MS. Journal of the American Society for Mass Spectrometry, 2007, 18, 1249-1264.	1,2	171
17	A computational approach toward label-free protein quantification using predicted peptide detectability. Bioinformatics, 2006, 22, e481-e488.	1.8	166
18	Ion Mobility Analysis of Molecular Dynamics. Annual Review of Physical Chemistry, 2014, 65, 175-196.	4.8	163

#	Article	IF	CITATIONS
19	Reactions of fourthâ€period metal ions (Ca+â^'Zn+) with O2: Metalâ€oxide ion bond energies. Journal of Chemical Physics, 1990, 93, 2676-2691.	1.2	162
20	Ion Mobility Spectrometry/Mass Spectrometry Snapshots for Assessing the Molecular Compositions of Complex Polymeric Systems. Analytical Chemistry, 2008, 80, 9073-9083.	3.2	162
21	Monitoring Structural Changes of Proteins in an Ion Trap over â^1/410â^200 ms:Â Unfolding Transitions in Cytochromeclons. Analytical Chemistry, 2001, 73, 6000-6007.	3.2	154
22	Structural Transitions of Electrosprayed Ubiquitin Ions Stored in an Ion Trap over â^¼10 ms to 30 sâ€. Journal of Physical Chemistry A, 2002, 106, 9976-9982.	1.1	149
23	Gas-Phase Separations of Electrosprayed Peptide Libraries. Analytical Chemistry, 1999, 71, 3918-3927.	3.2	148
24	Influence of solvent composition and capillary temperature on the conformations of electrosprayed ions: unfolding of compact ubiquitin conformers from pseudonative and denatured solutions. International Journal of Mass Spectrometry, 1999, 185-187, 37-47.	0.7	146
25	Profiling of Human Serum Glycans Associated with Liver Cancer and Cirrhosis by IMSâ^'MS. Journal of Proteome Research, 2008, 7, 1109-1117.	1.8	143
26	Evidence for Many Resolvable Structures within Conformation Types of Electrosprayed Ubiquitin lons. Journal of Physical Chemistry B, 2006, 110, 7017-7021.	1.2	142
27	Number of Solution States of Bradykinin from Ion Mobility and Mass Spectrometry Measurements. Journal of the American Chemical Society, 2011, 133, 13810-13813.	6.6	142
28	Conversion of CH4 to CH3OH: Reactions of CoO+ with CH4 and D2, Co+ with CH3OD and D2O, and Co+(CH3OD) with Xe. Journal of the American Chemical Society, 1994, 116, 7815-7826.	6.6	141
29	High-order structure and dissociation of gaseous peptide aggregates that are hidden in mass spectra. Journal of the American Society for Mass Spectrometry, 1998, 9, 743-759.	1.2	141
30	Toward Plasma Proteome Profiling with Ion Mobility-Mass Spectrometry. Journal of Proteome Research, 2006, 5, 2977-2984.	1.8	139
31	High-Resolution Ion Cyclotron Mobility Spectrometry. Analytical Chemistry, 2009, 81, 1482-1487.	3.2	136
32	Resolving Oligomers from Fully Grown Polymers with IMSâ^'MS. Analytical Chemistry, 2007, 79, 7965-7974.	3.2	135
33	Multidimensional separations of complex peptide mixtures: a combined high-performance liquid chromatography/ion mobility/time-of-flight mass spectrometry approach. International Journal of Mass Spectrometry, 2001, 212, 97-109.	0.7	133
34	From Solution to the Gas Phase: Stepwise Dehydration and Kinetic Trapping of Substance P Reveals the Origin of Peptide Conformations. Journal of the American Chemical Society, 2013, 135, 19147-19153.	6.6	133
35	Resolving and assigning N-linked glycan structural isomers from ovalbumin by IMS-MS. Journal of the American Society for Mass Spectrometry, 2008, 19, 1706-1715.	1.2	130
36	Characterizing Oligosaccharides Using Injected-Ion Mobility/Mass Spectrometry. Analytical Chemistry, 1997, 69, 2504-2509.	3.2	129

#	Article	IF	CITATIONS
37	Physical and chemical evidence for metallofullerenes with metal atoms as part of the cage. Nature, 1994, 372, 248-250.	13.7	122
38	Evidence for unfolding and refolding of gas-phase cytochrome c ions in a Paul trap. Journal of the American Society for Mass Spectrometry, 2005, 16, 1493-1497.	1.2	119
39	Coupling Desorption Electrospray Ionization with Ion Mobility/Mass Spectrometry for Analysis of Protein Structure:Â Evidence for Desorption of Folded and Denatured States. Journal of Physical Chemistry B, 2006, 110, 5045-5051.	1.2	116
40	An Ion Trap Interface for ESIâ-'lon Mobility Experiments. Analytical Chemistry, 1997, 69, 4156-4161.	3.2	112
41	Development of High-Sensitivity Ion Trap Ion Mobility Spectrometry Time-of-Flight Techniques:Â A High-Throughput Nano-LC-IMS-TOF Separation of Peptides Arising from aDrosophilaProtein Extract. Analytical Chemistry, 2003, 75, 5137-5145.	3.2	111
42	Magic Number Clusters of Serine in the Gas Phase. Journal of Physical Chemistry B, 2001, 105, 8092-8096.	1.2	109
43	Mobility Labeling for Parallel CID of Ion Mixtures. Analytical Chemistry, 2000, 72, 2737-2740.	3.2	106
44	Exosome-Mediated Crosstalk between Keratinocytes and Macrophages in Cutaneous Wound Healing. ACS Nano, 2020, 14, 12732-12748.	7.3	106
45	Reaction of Sc+, Ti+, and V+with CO. MC+and MO+bond energies. Journal of Chemical Physics, 1991, 95, 3387-3393.	1.2	104
46	Gas-phase separations of protease digests. Journal of the American Society for Mass Spectrometry, 1998, 9, 1213-1216.	1.2	104
47	Resolution and structural transitions of elongated states of ubiquitin. Journal of the American Society for Mass Spectrometry, 2007, 18, 322-331.	1.2	99
48	Resolving Isomeric Peptide Mixtures:Â A Combined HPLC/Ion Mobility-TOFMS Analysis of a 4000-Component Combinatorial Library. Analytical Chemistry, 2002, 74, 26-36.	3.2	95
49	Characterizing Intermediates Along the Transition from Polyproline I to Polyproline II Using Ion Mobility Spectrometry-Mass Spectrometry. Journal of the American Chemical Society, 2014, 136, 12702-12711.	6.6	91
50	<i>Cis</i> â€" <i>Trans</i> Isomerizations of Proline Residues Are Key to Bradykinin Conformations. Journal of the American Chemical Society, 2013, 135, 3186-3192.	6.6	89
51	Conformation Types of Ubiquitin [M+8H]8+ Ions from Water:Methanol Solutions: Evidence for the N and A States in Aqueous Solution. Journal of Physical Chemistry B, 2012, 116, 3344-3352.	1.2	87
52	Gas-Phase DNA: Oligothymidine Ion Conformers. Journal of the American Chemical Society, 1997, 119, 9051-9052.	6.6	86
53	Transfer of Structural Elements from Compact to Extended States in Unsolvated Ubiquitin. Journal of the American Chemical Society, 2006, 128, 11713-11719.	6.6	86
54	Melting Proteins: Evidence for Multiple Stable Structures upon Thermal Denaturation of Native Ubiquitin from Ion Mobility Spectrometry-Mass Spectrometry Measurements. Journal of the American Chemical Society, 2017, 139, 6306-6309.	6.6	86

#	Article	IF	CITATIONS
55	Evidence for a Quasi-Equilibrium Distribution of States for Bradykinin [M + 3H] < sup > 3+ < /sup > Ions in the Gas Phase. Journal of Physical Chemistry B, 2010, 114, 7777-7783.	1.2	84
56	On the Dynamics of Fragment Isomerization in Collision-Induced Dissociation of Peptides. Journal of Physical Chemistry A, 2008, 112, 1286-1293.	1.1	82
57	Hybrid ion mobility and mass spectrometry as a separation tool. Journal of Chromatography A, 2016, 1439, 3-25.	1.8	81
58	Reaction of Zn+with NO2. The gasâ€phase thermochemistry of ZnO. Journal of Chemical Physics, 1991, 95, 7263-7268.	1.2	80
59	Volumes of Individual Amino Acid Residues in Gas-Phase Peptide Ions. Journal of the American Chemical Society, 1999, 121, 4031-4039.	6.6	80
60	Ion Trap/Ion Mobility/Quadrupole/Time-of-Flight Mass Spectrometry for Peptide Mixture Analysis. Analytical Chemistry, 2001, 73, 177-184.	3.2	80
61	Temperature-dependent H/D exchange of compact and elongated cytochrome c ions in the gas phase. Journal of the American Society for Mass Spectrometry, 2002, 13, 506-517.	1.2	79
62	Cryogenic Vibrational Spectroscopy Provides Unique Fingerprints for Glycan Identification. Journal of the American Society for Mass Spectrometry, 2017, 28, 2217-2222.	1.2	77
63	Large Anhydrous Polyalanine lons: Evidence for Extended Helices and Onset of a More Compact State. Journal of the American Chemical Society, 2001, 123, 1490-1498.	6.6	76
64	Gas molecule scattering & Departments for organic macro-ions in He versus N ₂ environments. Physical Chemistry Chemical Physics, 2015, 17, 15019-15029.	1.3	73
65	A Nano-Scale Barrel and Cube:Â Transition Metal-Mediated Self-Assembly of CpCoCb-Derived Ligand Scaffolds. Journal of the American Chemical Society, 2001, 123, 3818-3819.	6.6	72
66	An Ion Mobility/Ion Trap/Photodissociation Instrument for Characterization of Ion Structure. Journal of the American Society for Mass Spectrometry, 2011, 22, 1477-85.	1.2	72
67	Intrinsic Amino Acid Size Parameters from a Series of 113 Lysine-Terminated Tryptic Digest Peptide Ions. Journal of Physical Chemistry B, 1999, 103, 1203-1207.	1.2	70
68	Overtone mobility spectrometry: Part 1. Experimental observations. Journal of the American Society for Mass Spectrometry, 2009, 20, 729-737.	1.2	70
69	Identification of <i>Chlamydia trachomatis </i> Outer Membrane Complex Proteins by Differential Proteomics. Journal of Bacteriology, 2010, 192, 2852-2860.	1.0	70
70	Cisâ^'Trans Signatures of Proline-Containing Tryptic Peptides in the Gas Phase. Analytical Chemistry, 2002, 74, 1946-1951.	3.2	69
71	A Split-Field Drift Tube for Separation and Efficient Fragmentation of Biomolecular Ions. Analytical Chemistry, 2003, 75, 6202-6208.	3.2	67
72	Coupling Capillary Electrochromatography with Electrospray Fourier Transform Mass Spectrometry for Characterizing Complex Oligosaccharide Pools. Analytical Chemistry, 2003, 75, 1684-1690.	3.2	67

#	Article	IF	CITATIONS
73	Mapping the Proteome ofDrosophilamelanogaster:Â Analysis of Embryos and Adult Heads by LCâ^'IMSâ^'MS Methods. Journal of Proteome Research, 2005, 4, 1223-1237.	1.8	65
74	Infrared Spectroscopy of Mobility-Selected H ⁺ -Gly-Pro-Gly-Gly (GPGG). Journal of the American Society for Mass Spectrometry, 2015, 26, 1444-1454.	1.2	65
75	Electrospray Ionization Ion Mobility Mass Spectrometry of Human Brain Gangliosides. Analytical Chemistry, 2016, 88, 5166-5178.	3.2	65
76	Multidimensional Analysis of 16 Glucose Isomers by Ion Mobility Spectrometry. Analytical Chemistry, 2016, 88, 2335-2344.	3.2	65
77	Intrinsic Size Parameters for Val, lle, Leu, Gln, Thr, Phe, and Trp Residues from Ion Mobility Measurements of Polyamino Acid Ions. Journal of Physical Chemistry B, 1999, 103, 8780-8785.	1.2	64
78	Coupling Ion Mobility Separations, Collisional Activation Techniques, and Multiple Stages of MS for Analysis of Complex Peptide Mixtures. Analytical Chemistry, 2002, 74, 992-1006.	3.2	64
79	Chiral enrichment of serine via formation, dissociation, and soft-landing of octameric cluster ions. Journal of the American Society for Mass Spectrometry, 2004, 15, 1360-1365.	1.2	63
80	Mannose7 Glycan Isomer Characterization by IMS-MS/MS Analysis. Journal of the American Society for Mass Spectrometry, 2012, 23, 2158-2166.	1.2	63
81	Investigating carbohydrate isomers by IMS-CID-IMS-MS: precursor and fragment ion cross-sections. Analyst, The, 2015, 140, 6922-6932.	1.7	62
82	Gas-phase thermochemistry of the group 3 dioxides: ScO2, YO2 and LaO2. Chemical Physics Letters, 1992, 190, 259-265.	1.2	61
83	Developing liquid chromatography ion mobility mass spectometry techniques. Expert Review of Proteomics, 2005, 2, 553-565.	1.3	61
84	Analyzing a mixture of disaccharides by IMS-VUVPD-MS. International Journal of Mass Spectrometry, 2012, 309, 161-167.	0.7	61
85	Using Ion Mobility Data to Improve Peptide Identification: Intrinsic Amino Acid Size Parameters. Journal of Proteome Research, 2011, 10, 2318-2329.	1.8	58
86	Ion Trapping for Ion Mobility Spectrometry Measurements in a Cyclical Drift Tube. Analytical Chemistry, 2013, 85, 7003-7008.	3.2	58
87	A microdroplet-accelerated Biginelli reaction: mechanisms and separation of isomers using IMS-MS. Chemical Science, 2019, 10, 4822-4827.	3.7	58
88	Charge-remote fragmentation of lithiated fatty acids on a TOF-TOF instrument using matrix-ionization. Journal of the American Society for Mass Spectrometry, 2007, 18, 1967-1972.	1.2	57
89	Conformations of Prolyl–Peptide Bonds in the Bradykinin 1–5 Fragment in Solution and in the Gas Phase. Journal of the American Chemical Society, 2016, 138, 9224-9233.	6.6	57
90	Conformational studies of Zn-Ligand-Hexose diastereomers using ion mobility measurements and density functional theory calculations. Journal of the American Society for Mass Spectrometry, 2002, 13, 284-293.	1.2	56

#	Article	IF	Citations
91	Nanoflow LC/lon Mobility/CID/TOF for Proteomics:Â Analysis of a Human Urinary Proteome. Journal of Proteome Research, 2003, 2, 589-597.	1.8	56
92	Exploring Crown Ethers as Shift Reagents for Ion Mobility Spectrometry. Analytical Chemistry, 2006, 78, 6792-6800.	3.2	56
93	Profiling of phospholipids and related lipid structures using multidimensional ion mobility spectrometry-mass spectrometry. International Journal of Mass Spectrometry, 2009, 287, 58-69.	0.7	56
94	Formation of peptide aggregates during ESI: Size, charge, composition, and contributions to noise. Journal of the American Society for Mass Spectrometry, 2001, 12, 1020-1035.	1.2	54
95	Protein Expression in a Drosophila Model of Parkinson's Disease. Journal of Proteome Research, 2007, 6, 348-357.	1.8	53
96	Glycosaminoglycan Analysis by Cryogenic Messenger-Tagging IR Spectroscopy Combined with IMS-MS. Analytical Chemistry, 2017, 89, 7601-7606.	3.2	53
97	Characterizing the <i>Conformationome</i> : Toward a Structural Understanding of the Proteome. Accounts of Chemical Research, 2017, 50, 556-560.	7.6	53
98	Quantitative Proteomics of a Presymptomatic A53T α-Synuclein Drosophila Model of Parkinson Disease. Molecular and Cellular Proteomics, 2008, 7, 1191-1203.	2.5	52
99	Structures and Isomerization of LaCn+ Clusters. The Journal of Physical Chemistry, 1995, 99, 11376-11386.	2.9	51
100	Development of high throughput dispersive LC-ion mobilityTOFMS techniques for analysing the human plasma proteome. Briefings in Functional Genomics & Proteomics, 2004, 3, 177-186.	3.8	51
101	Metal-Containing Carbon Clusters: Structures, Isomerization, and Formation of NbCn+ Clusters. Journal of the American Chemical Society, 1995, 117, 8841-8850.	6.6	49
102	Ions from Solution to the Gas Phase: A Molecular Dynamics Simulation of the Structural Evolution of Substance P during Desolvation of Charged Nanodroplets Generated by Electrospray Ionization. Journal of the American Chemical Society, 2017, 139, 2981-2988.	6.6	49
103	Dissociation of different conformations of ubiquitin ions. Journal of the American Society for Mass Spectrometry, 2002, 13, 719-723.	1.2	48
104	Assessing the Peak Capacity of IMSâ^IMS Separations of Tryptic Peptide Ions in He at 300 K. Analytical Chemistry, 2007, 79, 515-522.	3.2	48
105	Delineating Diseases by IMS-MS Profiling of Serum N-linked Glycans. Journal of Proteome Research, 2012, 11, 576-585.	1.8	48
106	Electrospray Ionization Mechanisms for Large Polyethylene Glycol Chains Studied Through Tandem Ion Mobility Spectrometry. Journal of the American Society for Mass Spectrometry, 2014, 25, 1332-1345.	1.2	48
107	Fast and accurate identification of semi-tryptic peptides in shotgun proteomics. Bioinformatics, 2008, 24, 102-109.	1.8	47
108	Gas-phase self-assembly of endohedral metallofullerenes. Nature, 1994, 367, 718-720.	13.7	46

#	Article	IF	Citations
109	Ion Mobility-Mass Spectrometry Analysis of Serum N-linked Glycans from Esophageal Adenocarcinoma Phenotypes. Journal of Proteome Research, 2012, 11, 6102-6110.	1.8	46
110	Solution Dependence of the Collisional Activation of Ubiquitin $[M+7H]$ ⁷⁺ lons. Journal of the American Society for Mass Spectrometry, 2014, 25, 2000-2008.	1.2	46
111	Evidence for Two New Solution States of Ubiquitin by IMS–MS Analysis. Journal of Physical Chemistry B, 2014, 118, 3498-3506.	1.2	46
112	Peer Reviewed: Injected-Ion Mobility Analysis of Biomolecules. Analytical Chemistry, 1997, 69, 728A-735A.	3.2	45
113	Prediction of peptide ion mobilities via a priori calculations from intrinsic size parameters of amino acid residues. Journal of the American Society for Mass Spectrometry, 2001, 12, 885-888.	1.2	45
114	Do Homochiral Aggregates Have an Entropic Advantage?. Journal of Physical Chemistry B, 2005, 109, 440-444.	1.2	45
115	Proteome Profiling for Assessing Diversity:Â Analysis of Individual Heads ofDrosophilamelanogasterUsing LCâ^'lon Mobilityâ^'MS. Journal of Proteome Research, 2005, 4, 1238-1247.	1.8	45
116	Heterogeneity of Glycan Processing on Trimeric SARS-CoV-2 Spike Protein Revealed by Charge Detection Mass Spectrometry. Journal of the American Chemical Society, 2021, 143, 3959-3966.	6.6	45
117	Anhydrous Polyproline Helices and Globules. Journal of Physical Chemistry B, 2004, 108, 4885-4898.	1.2	44
118	DL-Proline. Acta Crystallographica Section C: Crystal Structure Communications, 2005, 61, o506-o508.	0.4	44
119	Overtone mobility spectrometry: Part 2. Theoretical considerations of resolving power. Journal of the American Society for Mass Spectrometry, 2009, 20, 738-750.	1.2	44
120	Formation of Nanometer-Scale Serine Clusters by Sonic Spray. Journal of Physical Chemistry B, 2004, 108, 6105-6111.	1.2	43
121	Spontaneous Anti-Resolution in Heterochiral Clusters of Serine. Journal of the American Chemical Society, 2004, 126, 4110-4111.	6.6	42
122	Glycopeptide Site Heterogeneity and Structural Diversity Determined by Combined Lectin Affinity Chromatography/IMS/CID/MS Techniques. Journal of the American Society for Mass Spectrometry, 2015, 26, 1092-1102.	1.2	42
123	Quantifying Peptides in Isotopically Labeled Protease Digests by Ion Mobility/Time-of-Flight Mass Spectrometry. Analytical Chemistry, 2002, 74, 950-958.	3.2	41
124	An IMSâ€"IMS threshold method for semi-quantitative determination of activation barriers: Interconversion of proline cisâ†"trans forms in triply protonated bradykinin. International Journal of Mass Spectrometry, 2015, 377, 646-654.	0.7	41
125	The gasâ€phase thermochemistry of TiH. Journal of Chemical Physics, 1991, 95, 1228-1233.	1.2	40
126	Gasâ€phase thermochemistry of VH and CrH. Journal of Chemical Physics, 1993, 98, 4929-4936.	1.2	40

#	Article	IF	Citations
127	Prediction of Peptide Ion Collision Cross Sections from Topological Molecular Structure and Amino Acid Parameters. Analytical Chemistry, 2002, 74, 1360-1370.	3.2	40
128	Extracted fragment ion mobility distributions: A new method for complex mixture analysis. International Journal of Mass Spectrometry, 2012, 309, 154-160.	0.7	40
129	Metal-Mediated Peptide Ion Conformations in the Gas Phase. Journal of Physical Chemistry B, 2000, 104, 4545-4551.	1.2	39
130	Collision-Induced Dissociation of Mobility-Separated Ions Using an Orifice-Skimmer Cone at the Back of a Drift Tube. Analytical Chemistry, 2001, 73, 3549-3555.	3.2	39
131	Gas-phase separations of complex tryptic peptide mixtures. Fresenius' Journal of Analytical Chemistry, 2001, 369, 234-245.	1.5	39
132	Nanoflow LC/IMS-MS and LC/IMS-CID/MS of protein mixtures. Journal of the American Society for Mass Spectrometry, 2004, 15, 1341-1353.	1.2	38
133	Development of a high-throughput IMS–IMS–MS approach for analyzing mixtures of biomolecules. Journal of Proteomics, 2008, 71, 318-331.	1.2	38
134	A Scanning Frequency Mode for Ion Cyclotron Mobility Spectrometry. Analytical Chemistry, 2010, 82, 8266-8271.	3.2	38
135	Ion Mobility-Mass Spectrometry Reveals the Energetics of Intermediates that Guide Polyproline Folding. Journal of the American Society for Mass Spectrometry, 2016, 27, 22-30.	1.2	37
136	Isotopic Effect on Ion Mobility and Separation of Isotopomers by High-Field Ion Mobility Spectrometry. Analytical Chemistry, 2010, 82, 8047-8051.	3.2	36
137	Protein Expression in the Striatum and Cortex Regions of the Brain for a Mouse Model of Huntington's Disease. Journal of Proteome Research, 2007, 6, 3134-3142.	1.8	35
138	Compact â†' Extended Helix Transitions of Polyalanine in Vacuo. Journal of Physical Chemistry B, 2003, 107, 2111-2117.	1.2	34
139	Developing IMS–IMS–MS for rapid characterization of abundant proteins in human plasma. International Journal of Mass Spectrometry, 2009, 283, 149-160.	0.7	34
140	From Solution to the Gas Phase: Factors That Influence Kinetic Trapping of Substance P in the Gas Phase. Journal of Physical Chemistry B, 2014, 118, 14336-14344.	1.2	34
141	Structures and Formation of Small LaCn+ Metallofullerenes. The Journal of Physical Chemistry, 1994, 98, 12819-12821.	2.9	33
142	Bonding of Metals to Carbon Rings: LaCn+ Isomers with La+ Inserted and Attached to the Ring. Journal of the American Chemical Society, 1994, 116, 5971-5972.	6.6	33
143	Chirally Directed Formation of Nanometer-Scale Proline Clusters. Journal of the American Chemical Society, 2006, 128, 10833-10839.	6.6	33
144	Variable-Temperature Electrospray Ionization for Temperature-Dependent Folding/Refolding Reactions of Proteins and Ligand Binding. Analytical Chemistry, 2021, 93, 6924-6931.	3.2	33

#	Article	IF	CITATIONS
145	Lifetime Proteomic Profiling of an A30P α-Synuclein <i>Drosophila</i> Model of Parkinson's Disease. Journal of Proteome Research, 2007, 6, 3729-3738.	1.8	32
146	Determination of Cross Sections by Overtone Mobility Spectrometry: Evidence for Loss of Unstable Structures at Higher Overtones. Journal of Physical Chemistry B, 2010, 114, 12406-12415.	1.2	32
147	Charge Detection Mass Spectrometry Measurements of Exosomes and other Extracellular Particles Enriched from Bovine Milk. Analytical Chemistry, 2020, 92, 3285-3292.	3.2	32
148	A database of alkali metal-containing peptide cross sections: Influence of metals on size parameters for specific amino acids. International Journal of Mass Spectrometry, 2012, 330-332, 35-45.	0.7	31
149	Examining the Proteome of Drosophila Across Organism Lifespan. Journal of Proteome Research, 2007, 6, 3637-3647.	1.8	30
150	Gas-phase conformation-specific photofragmentation of proline-containing peptide ions. Journal of the American Society for Mass Spectrometry, 2010, 21, 1455-1465.	1.2	30
151	Controlled Formation of Peptide Bonds in the Gas Phase. Journal of the American Chemical Society, 2011, 133, 15834-15837.	6.6	30
152	Assessment of Purity and Screening of Peptide Libraries by Nested Ion Mobility-TOFMS:Â Identification of RNase S-Protein Binders. Analytical Chemistry, 2001, 73, 424-433.	3.2	29
153	Development of high-throughput liquid chromatography injected ion mobility quadrupole time-of-flight techniques for analysis of complex peptide mixtures. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2002, 782, 343-351.	1.2	29
154	Development of Field Modulation in a Split-Field Drift Tube for High-Throughput Multidimensional Separations. Journal of Proteome Research, 2005, 4, 25-35.	1.8	29
155	Cryogenic IR spectroscopy combined with ion mobility spectrometry for the analysis of human milk oligosaccharides. Analyst, The, 2018, 143, 1846-1852.	1.7	29
156	Identifying a Protein by MALDI-TOF Mass Spectrometry: An Experiment for the Undergraduate Laboratory. Journal of Chemical Education, 2003, 80, 177.	1.1	28
157	Assessing Intrinsic Side Chain Interactions betweeniandi+ 4 Residues in Solvent-Free Peptides:Â A Combinatorial Gas-Phase Approachâ€. Journal of Physical Chemistry A, 2003, 107, 10566-10579.	1.1	28
158	Examining the Influence of Phosphorylation on Peptide Ion Structure by Ion Mobility Spectrometry-Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2016, 27, 786-794.	1.2	28
159	Shift Reagents for Multidimensional Ion Mobility Spectrometry-Mass Spectrometry Analysis of Complex Peptide Mixtures: Evaluation of 18-Crown-6 Ether Complexes. Analytical Chemistry, 2011, 83, 5377-5385.	3.2	27
160	Metal-dependent allosteric activation and inhibition on the same molecular scaffold: the \hat{A} copper sensor CopY from <i>Streptococcus pneumoniae</i> . Chemical Science, 2018, 9, 105-118.	3.7	27
161	Ion mobility mass spectrometry provides novel insights into the expression and structure of gangliosides in the normal adult human hippocampus. Analyst, The, 2018, 143, 5234-5246.	1.7	27
162	Direct determination of the adiabatic ionization energy of NO2 as measured by guided ionâ€beam mass spectrometry. Journal of Chemical Physics, 1992, 97, 2451-2458.	1.2	26

#	Article	IF	Citations
163	Improving the Efficiency of IMSâ^'IMS by a Combing Technique. Analytical Chemistry, 2008, 80, 1918-1927.	3.2	26
164	Treatise on the Measurement of Molecular Masses with Ion Mobility Spectrometry. Analytical Chemistry, 2009, 81, 5876-5880.	3.2	26
165	Transitions between Elongated Conformations of Ubiquitin [M+11H] ¹¹⁺ Enhance Hydrogen/Deuterium Exchange. Journal of Physical Chemistry B, 2011, 115, 4509-4515.	1.2	26
166	Evidence for Many Unique Solution Structures for Chymotrypsin Inhibitor 2: A Thermodynamic Perspective Derived from vT-ESI-IMS-MS Measurements. Journal of the American Chemical Society, 2020, 142, 17372-17383.	6.6	26
167	Water-Mediated Dimerization of Ubiquitin Ions Captured by Cryogenic Ion Mobility-Mass Spectrometry. Journal of Physical Chemistry Letters, 2015, 6, 4947-4951.	2.1	25
168	Electrospray ionization ion mobility mass spectrometry provides novel insights into the pattern and activity of fetal hippocampus gangliosides. Biochimie, 2017, 139, 81-94.	1.3	25
169	Conformationally Regulated Peptide Bond Cleavage in Bradykinin. Journal of the American Chemical Society, 2018, 140, 9357-9360.	6.6	25
170	Intrinsic GTPase Activity of K-RAS Monitored by Native Mass Spectrometry. Biochemistry, 2019, 58, 3396-3405.	1.2	25
171	Investigation of isomeric intermediates: Co+-NH3 and H-Co+-NH2. Journal of the American Chemical Society, 1989, 111, 8280-8281.	6.6	24
172	Solution thermochemistry of concanavalin A tetramer conformers measured by variable-temperature ESI-IMS-MS. International Journal of Mass Spectrometry, 2019, 443, 93-100.	0.7	24
173	Development of LC-IMS-CID-TOFMS techniques: Analysis of a 256 component tetrapeptide combinatorial library. Journal of the American Society for Mass Spectrometry, 2003, 14, 1424-1436.	1.2	23
174	Populations of Metal-Glycan Structures Influence MS Fragmentation Patterns. Journal of the American Society for Mass Spectrometry, 2015, 26, 25-35.	1.2	23
175	Variable-Temperature ESI-IMS-MS Analysis of Myohemerythrin Reveals Ligand Losses, Unfolding, and a Non-Native Disulfide Bond. Analytical Chemistry, 2019, 91, 6808-6814.	3.2	23
176	Determining synthetic failures in. Journal of the American Society for Mass Spectrometry, 2000, 11, 352-355.	1.2	22
177	Gas-Phase Separations of Protein and Peptide Ion Fragments Generated by Collision-Induced Dissociation in an Ion Trap. Analytical Chemistry, 2002, 74, 4889-4894.	3.2	22
178	Gas Phase Polyalanine:  Assessment of i → i + 3 and i → i + 4 Helical Turns in [Alan + 4H]4+ (n = 29â^'49) Ioi Journal of Physical Chemistry B, 2002, 106, 12045-12051.	n. _{1.2}	21
179	Gridless Overtone Mobility Spectrometry. Analytical Chemistry, 2013, 85, 10174-10179.	3.2	21
180	Configurationally-Coupled Protonation of Polyproline-7. Journal of the American Chemical Society, 2015, 137, 8680-8683.	6.6	21

#	Article	IF	CITATIONS
181	Dissecting the Components of Sindbis Virus from Arthropod and Vertebrate Hosts: Implications for Infectivity Differences. ACS Infectious Diseases, 2019, 5, 892-902.	1.8	21
182	Determination of Sequence-Specific Intrinsic Size Parameters from Cross Sections for 162 Tripeptides. Journal of Physical Chemistry B, 2005, 109, 11802-11809.	1.2	20
183	Application of ion mobility tandem mass spectrometry to compositional and structural analysis of glycopeptides extracted from the urine of a patient diagnosed with Schindler disease. Rapid Communications in Mass Spectrometry, 2015, 29, 1929-1937.	0.7	20
184	Melting of Hemoglobin in Native Solutions as measured by IMS-MS. Analytical Chemistry, 2020, 92, 3440-3446.	3.2	20
185	Proteome Response to the Panneural Expression of Human Wild-Type α-Synuclein: A <i>Drosophila</i> Model of Parkinson's Disease. Journal of Proteome Research, 2008, 7, 3911-3921.	1.8	19
186	Overtone Mobility Spectrometry: Part 3. On the Origin of Peaks. Journal of the American Society for Mass Spectrometry, 2011, 22, 804-816.	1.2	19
187	A Database of Alkaline-Earth-Coordinated Peptide Cross Sections: Insight into General Aspects of Structure. Journal of the American Society for Mass Spectrometry, 2013, 24, 768-779.	1.2	19
188	The binding of Ca2+, Co2+, Ni2+, Cu2+, and Zn2+ cations to angiotensin I determined by mass spectrometry based techniques. International Journal of Mass Spectrometry, 2013, 354-355, 318-325.	0.7	19
189	"Wet―Versus "Dry―Folding of Polyproline. Journal of the American Society for Mass Spectrometry, 2016, 27, 1037-1047.	1.2	19
190	Long-Lived Intermediates in a Cooperative Two-State Folding Transition. Journal of Physical Chemistry B, 2016, 120, 12040-12046.	1.2	19
191	Characterization of lectin binding affinities via direct LC-MS profiling: implications for glycopeptide enrichment and separation strategies. Analyst, The, 2017, 142, 65-74.	1.7	19
192	Solvent Mediation of Peptide Conformations: Polyproline Structures in Water, Methanol, Ethanol, and 1-Propanol as Determined by Ion Mobility Spectrometry-Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2019, 30, 77-84.	1.2	19
193	Evidence for Spontaneous Resolution of Icosahedral Proline. Journal of the American Chemical Society, 2006, 128, 15988-15989.	6.6	18
194	Overtone Mobility Spectrometry: Part 4. OMS-OMS Analyses of Complex Mixtures. Journal of the American Society for Mass Spectrometry, 2011, 22, 2049-60.	1.2	18
195	Direct Measurement of the Isomerization Barrier of the Isolated Retinal Chromophore. Angewandte Chemie - International Edition, 2015, 54, 4748-4752.	7.2	18
196	Unfolding of Hydrated Alkyl Diammonium Cations Revealed by Cryogenic Ion Mobility-Mass Spectrometry. Journal of the American Chemical Society, 2015, 137, 8916-8919.	6.6	18
197	Melting proteins confined in nanodroplets with 10.6 \hat{l} /4m light provides clues about early steps of denaturation. Chemical Communications, 2018, 54, 3270-3273.	2.2	18
198	Characterizing Thermal Transitions of IgG with Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2019, 30, 2438-2445.	1.2	18

#	Article	IF	CITATIONS
199	Cerebrospinal fluid: Profiling and fragmentation of gangliosides by ion mobility mass spectrometry. Biochimie, 2020, 170, 36-48.	1.3	18
200	Temperature Regulates Stability, Ligand Binding (Mg ²⁺ and ATP), and Stoichiometry of GroEL–GroES Complexes. Journal of the American Chemical Society, 2022, 144, 2667-2678.	6.6	18
201	Variable-Temperature Native Mass Spectrometry for Studies of Protein Folding, Stabilities, Assembly, and Molecular Interactions. Annual Review of Biophysics, 2022, 51, 63-77.	4.5	18
202	Metal-containing carbon clusters. Journal of the Chemical Society Dalton Transactions, 1996, , 567.	1.1	17
203	Stable Isotope Labeling and Label-Free Proteomics of <i>Drosophila parkin</i> Null Mutants. Journal of Proteome Research, 2009, 8, 4500-4510.	1.8	17
204	Proteome changes in the aging Drosophila melanogaster head. International Journal of Mass Spectrometry, 2018, 425, 36-46.	0.7	17
205	Gangliosides of Human Glioblastoma Multiforme: A Comprehensive Mapping and Structural Analysis by Ion Mobility Tandem Mass Spectrometry, Journal of the American Society for Mass Spectrometry, 2021, 32, 1249-1257.	1.2	17
206	Protons Are Fast and Smart; Proteins Are Slow and Dumb: On the Relationship of Electrospray Ionization Charge States and Conformations. Journal of the American Society for Mass Spectrometry, 2021, 32, 1553-1561.	1.2	17
207	Large anhydrous polyalanine ions: substitution of Na+ for H+ destabilizes folded states. International Journal of Mass Spectrometry, 2001, 204, 87-100.	0.7	16
208	Conformational change of electrosprayed cytochrome c studied by laser-induced fluorescence. Chemical Physics Letters, 2001, 337, 79-84.	1.2	16
209	Combinatorial Libraries of Synthetic Peptides as a Model for Shotgun Proteomics. Analytical Chemistry, 2010, 82, 6559-6568.	3.2	16
210	Oscillations of Chiral Preference in Proline Clusters. Journal of Physical Chemistry A, 2013, 117, 1035-1041.	1.1	16
211	Selected Overtone Mobility Spectrometry. Analytical Chemistry, 2015, 87, 5132-5138.	3.2	16
212	Understanding the Thermal Denaturation of Myoglobin with IMS-MS: Evidence for Multiple Stable Structures and Trapped Pre-equilibrium States. Journal of the American Society for Mass Spectrometry, 2021, 32, 64-72.	1.2	16
213	Complexation of Amino Compounds by 18C6 Improves Selectivity by IMS-IMS-MS: Application to Petroleum Characterization. Journal of the American Society for Mass Spectrometry, 2011, 22, 817-27.	1.2	15
214	lon mobility mass spectrometry of human melanoma gangliosides. Biochimie, 2020, 177, 226-237.	1.3	15
215	Penultimate Proline in Neuropeptides. Analytical Chemistry, 2015, 87, 8466-8472.	3.2	14
216	ESI-IM-MS and Collision-Induced Unfolding That Provide Insight into the Linkage-Dependent Interfacial Interactions of Covalently Linked Diubiquitin. Analytical Chemistry, 2017, 89, 10094-10103.	3.2	14

#	Article	IF	CITATIONS
217	Determination of Gas-Phase Ion Structures of Locally Polar Homopolymers Through High-Resolution Ion Mobility Spectrometry–Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2019, 30, 905-918.	1.2	14
218	The Importance of Electron Transfer Mechanism in Reactions of Neutral Transition Metal Atoms. Laser Chemistry, 1995, 15, 209-220.	0.5	13
219	Biomolecular condensation via ultraviolet excitation in vacuo. International Journal of Mass Spectrometry, 2012, 316-318, 6-11.	0.7	13
220	Intrinsic size parameters for palmitoylated and carboxyamidomethylated peptides. International Journal of Mass Spectrometry, 2014, 368, 6-14.	0.7	13
221	Substance P in Solution: Trans-to-Cis Configurational Changes of Penultimate Prolines Initiate Non-enzymatic Peptide Bond Cleavages. Journal of the American Society for Mass Spectrometry, 2019, 30, 919-931.	1.2	13
222	Biologically-Inspired Peptide Reagents for Enhancing IMS-MS Analysis of Carbohydrates. Journal of the American Society for Mass Spectrometry, 2011, 22, 1602-1609.	1.2	12
223	Chirality and Packing in Small Proline Clusters. Journal of Physical Chemistry B, 2012, 116, 11442-11446.	1.2	12
224	On the Split Personality of Penultimate Proline. Journal of the American Society for Mass Spectrometry, 2015, 26, 444-452.	1.2	12
225	Delineation of disease phenotypes associated with esophageal adenocarcinoma by MALDI-IMS-MS analysis of serum N-linked glycans. Analyst, The, 2017, 142, 1525-1535.	1.7	12
226	Glycoproteomic Analysis of Human Urinary Exosomes. Analytical Chemistry, 2020, 92, 14357-14365.	3.2	12
227	Evaluation of ion mobility spectroscopy for determining charge-solvated versus salt-bridge structures of protonated trimers. Journal of the American Society for Mass Spectrometry, 2005, 16, 1009-1019.	1.2	11
228	Protein oligomers frozen in time. Nature Chemistry, 2009, 1, 257-258.	6.6	11
229	Resolution of Stepwise Cooperativities of Copper Binding by the Homotetrameric Copperâ€Sensitive Operon Repressor (CsoR): Impact on Structure and Stability. Angewandte Chemie - International Edition, 2015, 54, 12795-12799.	7.2	11
230	Cisâ†'Trans Isomerization of Pro ⁷ in Oxytocin Regulates Zn ²⁺ Binding. Journal of the American Society for Mass Spectrometry, 2016, 27, 1376-1382.	1.2	10
231	Solid-state packing dictates the unexpected solubility of aromatic peptides. Cell Reports Physical Science, 2021, 2, 100391.	2.8	10
232	Entropy in the Molecular Recognition of Membrane Protein–Lipid Interactions. Journal of Physical Chemistry Letters, 2021, 12, 12218-12224.	2.1	10
233	Split-Field Drift Tube/Mass Spectrometry and Isotopic Labeling Techniques for Determination of Single Amino Acid Polymorphisms. Journal of Proteome Research, 2006, 5, 1879-1887.	1.8	9
234	Overtone Mobility Spectrometry: Part 5. Simulations and Analytical Expressions Describing Overtone Limits. Journal of the American Society for Mass Spectrometry, 2013, 24, 615-621.	1.2	9

#	Article	IF	CITATIONS
235	Effects of Fe(II)/H ₂ O ₂ Oxidation on Ubiquitin Conformers Measured by Ion Mobility-Mass Spectrometry. Journal of Physical Chemistry B, 2013, 117, 164-173.	1.2	9
236	Differentiation of Compact and Extended Conformations of Di-Ubiquitin Conjugates with Lysine-Specific Isopeptide Linkages by Ion Mobility-Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2011, 22, 1463-1471.	1.2	8
237	A Database of Transition-Metal-Coordinated Peptide Cross-Sections: Selective Interaction with Specific Amino Acid Residues. Journal of the American Society for Mass Spectrometry, 2017, 28, 1293-1303.	1.2	8
238	Substance P in the Gas Phase: Conformational Changes and Dissociations Induced by Collisional Activation in a Drift Tube. Journal of the American Society for Mass Spectrometry, 2019, 30, 932-945.	1.2	8
239	Thermal Analysis of a Mixture of Ribosomal Proteins by vT-ESI-MS: Toward a Parallel Approach for Characterizing the Stabilitome. Analytical Chemistry, 2021, 93, 8484-8492.	3.2	8
240	Insights into aging through measurements of the Drosophila proteome as a function of temperature. Mechanisms of Ageing and Development, 2010, 131, 584-590.	2.2	7
241	Collisional Activation of [14Pro+2H] < sup > 2+ < /sup > Clusters: Chiral Dependence of Evaporation and Fission Processes. Journal of Physical Chemistry B, 2012, 116, 7644-7651.	1.2	7
242	Conformational landscape and pathway of disulfide bond reduction of human alpha defensin. Protein Science, 2015, 24, 1264-1271.	3.1	7
243	Following a Folding Transition with Capillary Electrophoresis and Ion Mobility Spectrometry. Analytical Chemistry, 2016, 88, 10933-10939.	3.2	7
244	The intrinsically disordered N-terminal arm of the brome mosaic virus coat protein specifically recognizes the RNA motif that directs the initiation of viral RNA replication. Nucleic Acids Research, 2018, 46, 324-335.	6.5	7
245	Electronic Energies Are Not Enough: An Ion Mobility-Aided, Quantum Chemical Benchmark Analysis of H ⁺ GPGG Conformers. Journal of Chemical Theory and Computation, 2018, 14, 5406-5418.	2.3	7
246	Ion Mobility Mass Spectrometry Reveals Rare Sialylated Glycosphingolipid Structures in Human Cerebrospinal Fluid. Molecules, 2022, 27, 743.	1.7	7
247	Negatively-charged helices in the gas phase. Chemical Communications, 2014, 50, 8849.	2.2	6
248	Resolving Isomers of Star-Branched Poly(Ethylene Glycols) by IMS-MS Using Multiply Charged Ions. Journal of the American Society for Mass Spectrometry, 2021, 32, 21-32.	1.2	6
249	Action and Ion Mobility Spectroscopy of a Shortened Retinal Derivative. Journal of the American Society for Mass Spectrometry, 2018, 29, 2152-2159.	1.2	5
250	Position of Proline Mediates the Reactivity of S-Palmitoylation. ACS Chemical Biology, 2015, 10, 2529-2536.	1.6	4
251	A graphical representation of glycan heterogeneity. Glycobiology, 2022, 32, 201-207.	1.3	4
252	Analysis of Keratinocytic Exosomes from Diabetic and Nondiabetic Mice by Charge Detection Mass Spectrometry. Analytical Chemistry, 2022, 94, 8909-8918.	3.2	4

#	Article	IF	CITATIONS
253	Photosynthesis of a Combinatorial Peptide Library in the Gas Phase. Analytical Chemistry, 2015, 87, 9384-9388.	3.2	3
254	Cooperative Formation of Icosahedral Proline Clusters from Dimers. Journal of the American Society for Mass Spectrometry, 2018, 29, 95-102.	1.2	3
255	Monitoring the stabilities of a mixture of peptides by mass-spectrometry-based techniques. European Journal of Mass Spectrometry, 2019, 25, 73-81.	0.5	3
256	Comparison of gaseous ubiquitin ion structures obtained from a solid and solution matrix using ion mobility spectrometry/mass spectrometry. Rapid Communications in Mass Spectrometry, 2021, 35, e8793.	0.7	3
257	Untangling Hydrogen Bond Networks with Ion Mobility Spectrometry and Quantum Chemical Calculations: A Case Study on H ⁺ XPGG. Journal of Physical Chemistry B, 2019, 123, 5730-5741.	1.2	2
258	Influence of Solvents upon Diketopiperazine Formation of FPG8K. Journal of Physical Chemistry B, 2021, 125, 2952-2959.	1.2	2
259	Diketopiperazine Formation from FPGnK (n = $1\hat{a}\in$ 9) Peptides: Rates of Structural Rearrangements and Mechanisms. Journal of Physical Chemistry B, 2021, 125, 8107-8116.	1.2	2
260	<title>Structural dynamics of carbon- and metal- containing carbon clusters</title> ., 1994, 2124, 400.		1
261	A celebration of the scientific and personal contributions of Peter B. Armentrout. International Journal of Mass Spectrometry, 2012, 330-332, 4-5.	0.7	1
262	Multiple solution structures of the disordered peptide indolicidin from IMS-MS analysis. International Journal of Mass Spectrometry, 2018, 427, 52-58.	0.7	1
263	Snapshot, Conformation, and Bulk Fragmentation. , 2010, , 215-235.		1
264	Frontispiece: Direct Measurement of the Isomerization Barrier of the Isolated Retinal Chromophore. Angewandte Chemie - International Edition, 2015, 54, .	7.2	0
265	Direct Measurement of the Isomerization Barrier of the Isolated Retinal Chromophore. Journal of Physics: Conference Series, 2015, 635, 032034.	0.3	0
266	Editorial: Focus on Ionization Technologies Used in MS: Fundamentals and Applications, Honoring Dr. Sarah Trimpin, Recipient of the 2019 ASMS Biemann Medal. Journal of the American Society for Mass Spectrometry, 2021, 32, 616-617.	1.2	0
267	Ion Mobility/Time-of-Flight Analysis of Combinatorial Library Mixtures. , 2003, , 187-216.		0
268	Influence of N Terminus Amino Acid on Peptide Cleavage in Solution through Diketopiperazine Formation. Journal of the American Society for Mass Spectrometry, 2022, , .	1.2	0