
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9114582/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reduced Plasma Extracellular Vesicle CD5L Content in Patients With Acute-On-Chronic Liver Failure: Interplay With Specialized Pro-Resolving Lipid Mediators. Frontiers in Immunology, 2022, 13, 842996.	4.8	11
2	Commonly used methods for extracellular vesicles' enrichment: Implications in downstream analyses and use. European Journal of Cell Biology, 2022, 101, 151227.	3.6	27
3	Acellular cardiac scaffolds enriched with MSC-derived extracellular vesicles limit ventricular remodelling and exert local and systemic immunomodulation in a myocardial infarction porcine model. Theranostics, 2022, 12, 4656-4670.	10.0	33
4	Bovine peripheral blood MSCs chemotax towards inflammation and embryo implantation stimuli. Journal of Cellular Physiology, 2021, 236, 1054-1067.	4.1	22
5	Urinary vitronectin identifies patients with high levels of fibrosis in kidney grafts. Journal of Nephrology, 2021, 34, 861-874.	2.0	20
6	Dissemination of <i>Mycobacterium tuberculosis</i> is associated to a <i>SIGLEC1</i> null variant that limits antigen exchange via trafficking extracellular vesicles. Journal of Extracellular Vesicles, 2021, 10, e12046.	12.2	9
7	In Vitro Characterization of Human CD24hiCD38hi Regulatory B Cells Shows CD9 Is Not a Stable Breg Cell Marker. International Journal of Molecular Sciences, 2021, 22, 4583.	4.1	5
8	Urinary extracellular vesicles: A position paper by the Urine Task Force of the International Society for Extracellular Vesicles. Journal of Extracellular Vesicles, 2021, 10, e12093.	12.2	182
9	Local administration of porcine immunomodulatory, chemotactic and angiogenic extracellular vesicles using engineered cardiac scaffolds for myocardial infarction. Bioactive Materials, 2021, 6, 3314-3327.	15.6	40
10	B Cell-Derived Extracellular Vesicles Reveal Residual B Cell Activity in Kidney Graft Recipients Undergoing Pre-Transplant Desensitization. Frontiers in Medicine, 2021, 8, 781239.	2.6	4
11	Proteomic Research in Peritoneal Dialysis. International Journal of Molecular Sciences, 2020, 21, 5489.	4.1	11
12	Proteomic Characterization of Urinary Extracellular Vesicles from Kidney-Transplanted Patients Treated with Calcineurin Inhibitors. International Journal of Molecular Sciences, 2020, 21, 7569.	4.1	12
13	Potential of Extracellular Vesicle-Associated TSG-6 from Adipose Mesenchymal Stromal Cells in Traumatic Brain Injury. International Journal of Molecular Sciences, 2020, 21, 6761.	4.1	12
14	International Society for Extracellular Vesicles and International Society for Cell and Gene Therapy statement on extracellular vesicles from mesenchymal stromal cells and other cells: considerations for potential therapeutic agents to suppress coronavirus disease-19. Cytotherapy, 2020, 22, 482-485.	0.7	94
15	Extracellular Vesicles From Liver Progenitor Cells Downregulates Fibroblast Metabolic Activity and Increase the Expression of Immune-Response Related Molecules. Frontiers in Cell and Developmental Biology, 2020, 8, 613583.	3.7	Ο
16	Paradoxical role of Breg-inducing cytokines in autoimmune diseases. Journal of Translational Autoimmunity, 2019, 2, 100011.	4.0	15
17	Immunomodulatory Effect of MSC on B Cells Is Independent of Secreted Extracellular Vesicles. Frontiers in Immunology, 2019, 10, 1288.	4.8	78
18	Proteomic profiling of peritoneal dialysis effluent-derived extracellular vesicles: a longitudinal study. Journal of Nephrology, 2019, 32, 1021-1031.	2.0	12

#	Article	IF	CITATIONS
19	Comprehensive proteomic profiling of plasma-derived Extracellular Vesicles from dementia with Lewy Bodies patients. Scientific Reports, 2019, 9, 13282.	3.3	16
20	Exploratory study on microRNA profiles from plasma-derived extracellular vesicles in Alzheimer's disease and dementia with Lewy bodies. Translational Neurodegeneration, 2019, 8, 31.	8.0	112
21	Technical challenges for extracellular vesicle research towards clinical translation. European Heart Journal, 2019, 40, 3359-3360.	2.2	2
22	Extracellularâ€Vesicle Isolation from Different Biological Fluids by Sizeâ€Exclusion Chromatography. Current Protocols in Stem Cell Biology, 2019, 49, e82.	3.0	53
23	Extracellular vesicle isolation methods: rising impact of size-exclusion chromatography. Cellular and Molecular Life Sciences, 2019, 76, 2369-2382.	5.4	224
24	Osteogenic commitment of Wharton's jelly mesenchymal stromal cells: mechanisms and implications for bioprocess development and clinical application. Stem Cell Research and Therapy, 2019, 10, 356.	5.5	22
25	Bovine endometrial MSC: mesenchymal to epithelial transition during luteolysis and tropism to implantation niche for immunomodulation. Stem Cell Research and Therapy, 2019, 10, 23.	5.5	15
26	Extracellular vesicles, new actors in the search for biomarkers of dementias. Neurobiology of Aging, 2019, 74, 15-20.	3.1	32
27	Low doses of LPS exacerbate the inflammatory response and trigger death on TLR3-primed human monocytes. Cell Death and Disease, 2018, 9, 499.	6.3	38
28	Proteomic signature of circulating extracellular vesicles in dilated cardiomyopathy. Laboratory Investigation, 2018, 98, 1291-1299.	3.7	26
29	Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750.	12.2	6,961
30	Targeted-pig trial on safety and immunogenicity of serum-derived extracellular vesicles enriched fractions obtained from Porcine Respiratory and Reproductive virus infections. Scientific Reports, 2018, 8, 17487.	3.3	26
31	Graphene oxide enhances alginate encapsulated cells viability and functionality while not affecting the foreign body response. Drug Delivery, 2018, 25, 1147-1160.	5.7	25
32	Molecular profile of urine extracellular vesicles from normo-functional kidneys reveal minimal differences between living and deceased donors. BMC Nephrology, 2018, 19, 189.	1.8	17
33	Stem Cells: Immunotherapy in Solid Organ Transplantation. , 2018, , .		2
34	Microvesicles released from Giardia intestinalis disturb host-pathogen response in vitro. European Journal of Cell Biology, 2017, 96, 131-142.	3.6	72
35	Extracellular vesicles do not contribute to higher circulating levels of soluble <scp>LRP</scp> 1 in idiopathic dilated cardiomyopathy. Journal of Cellular and Molecular Medicine, 2017, 21, 3000-3009.	3.6	9
36	A bead-assisted flow cytometry method for the semi-quantitative analysis of Extracellular Vesicles. Scientific Reports, 2017, 7, 11271.	3.3	95

#	Article	IF	CITATIONS
37	Nanosized UCMSC-derived extracellular vesicles but not conditioned medium exclusively inhibit the inflammatory response of stimulated T cells: implications for nanomedicine. Theranostics, 2017, 7, 270-284.	10.0	155
38	Inflammatory Conditions Dictate the Effect of Mesenchymal Stem or Stromal Cells on B Cell Function. Frontiers in Immunology, 2017, 8, 1042.	4.8	106
39	Mesenchymal Stem Cells Induce Expression of CD73 in Human Monocytes In Vitro and in a Swine Model of Myocardial Infarction In Vivo. Frontiers in Immunology, 2017, 8, 1577.	4.8	36
40	Characterization and proteomic profile of extracellular vesicles from peritoneal dialysis efflux. PLoS ONE, 2017, 12, e0176987.	2.5	21
41	Tolerance in Kidney Transplantation: What Is on the B Side?. Mediators of Inflammation, 2016, 2016, 1-11.	3.0	10
42	Spleen-Dependent Immune Protection Elicited by CpG Adjuvanted Reticulocyte-Derived Exosomes from Malaria Infection Is Associated with Changes in T cell Subsets' Distribution. Frontiers in Cell and Developmental Biology, 2016, 4, 131.	3.7	37
43	The Complement Inhibitor Factor H Generates an Anti-Inflammatory and Tolerogenic State in Monocyte-Derived Dendritic Cells. Journal of Immunology, 2016, 196, 4274-4290.	0.8	54
44	Size-Exclusion Chromatography-based isolation minimally alters Extracellular Vesicles' characteristics compared to precipitating agents. Scientific Reports, 2016, 6, 33641.	3.3	385
45	Serum-derived exosomes from non-viremic animals previously exposed to the porcine respiratory and reproductive virus contain antigenic viral proteins. Veterinary Research, 2016, 47, 59.	3.0	42
46	Evidence-Based Clinical Use of Nanoscale Extracellular Vesicles in Nanomedicine. ACS Nano, 2016, 10, 3886-3899.	14.6	397
47	Increased expression with differential subcellular location of cytidine deaminase APOBEC3C in human CD4 + Tâ€cell activation and dendritic cell maturation. Immunology and Cell Biology, 2016, 94, 689-700.	2.3	9
48	Biological properties of extracellular vesicles and their physiological functions. Journal of Extracellular Vesicles, 2015, 4, 27066.	12.2	3,973
49	Sizeâ€exclusion chromatographyâ€based enrichment of extracellular vesicles from urine samples. Journal of Extracellular Vesicles, 2015, 4, 27369.	12.2	153
50	Sizeâ€exclusion chromatography as a standâ€alone methodology identifies novel markers in mass spectrometry analyses of plasmaâ€derived vesicles from healthy individuals. Journal of Extracellular Vesicles, 2015, 4, 27378.	12.2	158
51	Preclinical Evaluation of the Immunomodulatory Properties of Cardiac Adipose Tissue Progenitor Cells Using Umbilical Cord Blood Mesenchymal Stem Cells: A Direct Comparative Study. BioMed Research International, 2015, 2015, 1-9.	1.9	21
52	Urinary Extracellular Vesicles as Source of Biomarkers in Kidney Diseases. Frontiers in Immunology, 2015, 6, 6.	4.8	109
53	EVpedia: a community web portal for extracellular vesicles research. Bioinformatics, 2015, 31, 933-939.	4.1	317
54	The human CD5L/AIM-CD36 axis: A novel autophagy inducer in macrophages that modulates inflammatory responses. Autophagy, 2015, 11, 487-502.	9.1	78

#	Article	IF	CITATIONS
55	Therapeutic Potential of Extracellular Vesicles. Frontiers in Immunology, 2014, 5, 658.	4.8	16
56	Tolerance in Organ Transplantation: From Conventional Immunosuppression to Extracellular Vesicles. Frontiers in Immunology, 2014, 5, 416.	4.8	34
57	InmunologÃa. Punto y aparte. Inmunologia (Barcelona, Spain: 1987), 2013, 32, 41-42.	0.1	0
58	The α7β0 Isoform of the Complement Regulator C4b-Binding Protein Induces a Semimature, Anti-Inflammatory State in Dendritic Cells. Journal of Immunology, 2013, 190, 2857-2872.	0.8	33
59	First Symposium of "Grupo Español de Investigación en VesÃculas Extracelulares (GEIVEX)â€; Segovia, 8–9ÂNovember 2012. Journal of Extracellular Vesicles, 2013, 2, 20256.	12.2	1
60	Human scavenger protein AIM increases foam cell formation and CD36-mediated oxLDL uptake. Journal of Leukocyte Biology, 2013, 95, 509-520.	3.3	36
61	Vesiclepedia: A Compendium for Extracellular Vesicles with Continuous Community Annotation. PLoS Biology, 2012, 10, e1001450.	5.6	1,064
62	En homenaje a Ralph Marvin Steinman. Inmunologia (Barcelona, Spain: 1987), 2012, 31, 35-36.	0.1	1
63	Dendritic cells: Nearly 40 years later…. Inmunologia (Barcelona, Spain: 1987), 2012, 31, 49-57.	0.1	0
64	2011-2012, el bienio mediático de la InmunologÃa?. Inmunologia (Barcelona, Spain: 1987), 2012, 31, 63-64.	0.1	0
65	Ha llegado el momento…. Inmunologia (Barcelona, Spain: 1987), 2012, 31, 95-96.	0.1	2
66	Differential effects of monophosphoryl lipid A and cytokine cocktail as maturation stimuli of immunogenic and tolerogenic dendritic cells for immunotherapy. Vaccine, 2012, 30, 378-387.	3.8	25
67	TLR-activated conventional DCs promote γ-secretase-mediated conditioning of plasmacytoid DCs. Journal of Leukocyte Biology, 2012, 92, 133-143.	3.3	8
68	Proteomic analysis of microvesicles from plasma of healthy donors reveals high individual variability. Journal of Proteomics, 2012, 75, 3574-3584.	2.4	86
69	Regulatory role of vitamin D in T-cell reactivity against myelin peptides in relapsing-remitting multiple sclerosis patients. BMC Neurology, 2012, 12, 103.	1.8	17
70	Stable antigenâ€specific Tâ€cell hyporesponsiveness induced by tolerogenic dendritic cells from multiple sclerosis patients. European Journal of Immunology, 2012, 42, 771-782.	2.9	99
71	Capture of cell-derived microvesicles (exosomes and apoptotic bodies) by human plasmacytoid dendritic cells. Journal of Leukocyte Biology, 2012, 91, 751-758.	3.3	42
72	Analysis of the cumulative changes in Graves' disease thyroid glands points to IFN signature, plasmacytoid DCs and alternatively activated macrophages as chronicity determining factors. Journal of Autoimmunity, 2011, 36, 189-200.	6.5	34

#	Article	IF	CITATIONS
73	XXXVI Congreso de la Sociedad Española de InmunologÃa. Inmunologia (Barcelona, Spain: 1987), 2011, 30, 135-144.	0.1	0
74	¿Haciendo un poco de historia…?. Inmunologia (Barcelona, Spain: 1987), 2011, 30, 107.	0.1	1
75	Exosomes and retroviruses: the chicken or the egg?. Cellular Microbiology, 2011, 13, 10-17.	2.1	71
76	Specific T-cell proliferation to myelin peptides in relapsing-remitting multiple sclerosis. European Journal of Neurology, 2011, 18, 1101-1104.	3.3	13
77	Comparative study of clinical grade human tolerogenic dendritic cells. Journal of Translational Medicine, 2011, 9, 89.	4.4	146
78	Ligation of Notch Receptors in Human Conventional and Plasmacytoid Dendritic Cells Differentially Regulates Cytokine and Chemokine Secretion and Modulates Th Cell Polarization. Journal of Immunology, 2011, 186, 7006-7015.	0.8	26
79	Dendritic cells pulsed with antigen-specific apoptotic bodies prevent experimental type 1 diabetes. Clinical and Experimental Immunology, 2010, 160, 207-214.	2.6	75
80	Functional analysis of the CD300e receptor in human monocytes and myeloid dendritic cells. European Journal of Immunology, 2010, 40, 722-732.	2.9	32
81	HIV and Mature Dendritic Cells: Trojan Exosomes Riding the Trojan Horse?. PLoS Pathogens, 2010, 6, e1000740.	4.7	184
82	Biological aspects of human plasmacytoid dendritic cells and their leukemic counterparts; similarities and differences. Inmunologia (Barcelona, Spain: 1987), 2010, 29, 125-134.	0.1	0
83	Influenza outbreak, a year after the pandemic, what have we learned?. Inmunologia (Barcelona, Spain:) Tj ETQq1	1 0.78431 0.1	4 rgBT /Over
84	Distribution of CD31 on CD4 T-Cells from Cord Blood, Peripheral Blood and Tonsil at Different Stages of Differentiation~!2009-11-24~!2009-12-24~!2010-03-05~!. The Open Immunology Journal, 2010, 3, 19-26.	1.5	5
85	Myelin peptides in multiple sclerosis. Autoimmunity Reviews, 2009, 8, 650-653.	5.8	28
86	S.103. Detection of Interferon Signature, Plasmacytoid Dendritic Cells (pDCs) and Alternatively Activated Macrophages (AAM) in Graves' Disease Thyroid as Chronicity Factors. Clinical Immunology, 2009, 131, S161.	3.2	0
87	Secretion of interferonâ€Î³ by human macrophages demonstrated at the singleâ€cell level after costimulation with interleukin (IL)â€12 plus ILâ€18. Immunology, 2009, 126, 386-393.	4.4	173
88	Capture and transfer of HIV-1 particles by mature dendritic cells converges with the exosome-dissemination pathway. Blood, 2009, 113, 2732-2741.	1.4	208
89	Maturation of Blood-Derived Dendritic Cells Enhances Human Immunodeficiency Virus Type 1 Capture and Transmission. Journal of Virology, 2007, 81, 7559-7570.	3.4	99
90	The DC-SIGN–related lectin LSECtin mediates antigen capture and pathogen binding by human myeloid cells. Blood, 2007, 109, 5337-5345.	1.4	87

#	Article	IF	CITATIONS
91	Expression and function of the IL-2 receptor in activated human plasmacytoid dendritic cells. European Journal of Immunology, 2007, 37, 1764-1772.	2.9	26
92	Reduced numbers of plasmacytoid dendritic cells in aged blood donors. Experimental Gerontology, 2007, 42, 1033-1038.	2.8	72
93	Treatment of monocytes with interleukin (IL)-12 plus IL-18 stimulates survival, differentiation and the production of CXC chemokine ligands (CXCL)8, CXCL9 and CXCL10. Clinical and Experimental Immunology, 2006, 145, 535-544.	2.6	50
94	Tacrolimus treatment of plasmacytoid dendritic cells inhibits dinucleotide (CpG-)-induced tumour necrosis factor-alpha secretion. Immunology, 2006, 119, 488-498.	4.4	10
95	Primary Alloproliferative TH1 Response Induced by Immature Plasmacytoid Dendritic Cells in Collaboration with Myeloid DCs. American Journal of Transplantation, 2005, 5, 2838-2848.	4.7	9
96	Differential up-regulation of HLA-DM, invariant chain, and CD83 on myeloid and plasmacytoid dendritic cells from peripheral blood. Tissue Antigens, 2004, 63, 149-157.	1.0	12
97	Differential expression of the cytokine receptors for human interleukin (IL)-12 and IL-18 on lymphocytes of both CD45RA+ and CD45RO+ phenotype from tonsils, cord and adult peripheral blood. Clinical and Experimental Immunology, 2004, 138, 460-465.	2.6	15
98	Cord Blood Dendritic Cells: Subsets, Functional Characteristics and In Vitro Generation. Leukemia and Lymphoma, 2003, 44, 923-928.	1.3	5
99	Identification of both myeloid CD11c ⁺ and lymphoid CD11c ^{â^²} dendritic cell subsets in cord blood. British Journal of Haematology, 2001, 113, 925-931.	2.5	81
100	Dendritic cells can be successfully generated from CD34+ cord blood cells in the presence of autologous cord blood plasma. Bone Marrow Transplantation, 2000, 26, 371-376.	2.4	12
101	Sustained Expression of CD154 (CD40L) and Proinflammatory Cytokine Production by Alloantigen-Stimulated Umbilical Cord Blood T Cells. Journal of Immunology, 2000, 164, 6206-6212.	0.8	41
102	Transcription factors that regulate monocyte/macrophage differentiation. Journal of Leukocyte Biology, 1998, 63, 405-417.	3.3	198
103	The transcription factor PU.1 is involved in macrophage proliferation Journal of Experimental Medicine, 1996, 184, 61-69.	8.5	135
104	Repression of I-Al̂ ² Gene Expression by the Transcription Factor PU.1. Journal of Biological Chemistry, 1995, 270, 24385-24391.	3.4	34