
Erwin Grill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9113876/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Natural alleles of the abscisic acid catabolism gene <i>ZmAbh4</i> modulate water use efficiency and carbon isotope discrimination in maize. Plant Cell, 2022, 34, 3860-3872.	6.6	5
2	Synthesis and Exploration of Abscisic Acid Receptor Agonists Against Dought Stress by Adding Constraint to a Tetrahydroquinolineâ€Based Lead Structure. European Journal of Organic Chemistry, 2021, 2021, 3442-3457.	2.4	8
3	Mass-spectrometry-based draft of the Arabidopsis proteome. Nature, 2020, 579, 409-414.	27.8	328
4	Extensive signal integration by the phytohormone protein network. Nature, 2020, 583, 271-276.	27.8	104
5	Moonlighting Function of Phytochelatin Synthase1 in Extracellular Defense against Fungal Pathogens. Plant Physiology, 2020, 182, 1920-1932.	4.8	26
6	Rebuilding core abscisic acid signaling pathways of <i>Arabidopsis</i> in yeast. EMBO Journal, 2019, 38, e101859.	7.8	25
7	The formation of a camalexin-biosynthetic metabolon. Plant Cell, 2019, 31, tpc.00403.2019.	6.6	38
8	Increased water use efficiency and water productivity of arabidopsis by abscisic acid receptors from Populus canescens. Annals of Botany, 2019, 124, 581-589.	2.9	15
9	Revisiting the Basal Role of ABA – Roles Outside of Stress. Trends in Plant Science, 2019, 24, 625-635.	8.8	189
10	Abscisic Acid Receptors and Coreceptors Modulate Plant Water Use Efficiency and Water Productivity. Plant Physiology, 2019, 180, 1066-1080.	4.8	48
11	Modulation of ABA responses by the protein kinase WNK8. FEBS Letters, 2019, 593, 339-351.	2.8	10
12	Carbon isotope composition, water use efficiency, and drought sensitivity are controlled by a common genomic segment in maize. Theoretical and Applied Genetics, 2019, 132, 53-63.	3.6	26
13	Insights into the in Vitro and in Vivo SAR of Abscisic Acid – Exploring Unprecedented Variations of the Side Chain via Crossâ€Couplingâ€Mediated Syntheses. European Journal of Organic Chemistry, 2018, 2018, 1403-1415.	2.4	16
14	Advances and current challenges in calcium signaling. New Phytologist, 2018, 218, 414-431.	7.3	423
15	Generating Plants with Improved Water Use Efficiency. Agronomy, 2018, 8, 194.	3.0	51
16	Potent Analogues of Abscisic Acid – Identifying Cyano yclopropyl Moieties as Promising Replacements for the Cyclohexenone Headgroup. European Journal of Organic Chemistry, 2018, 2018, 1416-1425.	2.4	19
17	Combinatorial interaction network of abscisic acid receptors and coreceptors from <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10280-10285.	7.1	142
18	Interaction network of <scp>ABA</scp> receptors in grey poplar. Plant Journal, 2017, 92, 199-210.	5.7	23

ERWIN GRILL

#	Article	IF	CITATIONS
19	Leveraging abscisic acid receptors for efficient water use in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6791-6796.	7.1	106
20	Abscisic acid analogs as chemical probes for dissection of abscisic acid responses in Arabidopsis thaliana. Phytochemistry, 2015, 113, 96-107.	2.9	31
21	Abscisic acid sensor RCAR7/PYL13, specific regulator of protein phosphatase coreceptors. Proceedings of the United States of America, 2014, 111, 5741-5746.	7.1	100
22	Exploring the <scp>A</scp> rabidopsis sulfur metabolome. Plant Journal, 2014, 77, 31-45.	5.7	60
23	Type 2C protein phosphatases in plants. FEBS Journal, 2013, 280, 681-693.	4.7	200
24	Electric defence. Nature, 2013, 500, 404-405.	27.8	20
25	Hydraulic signals in long-distance signaling. Current Opinion in Plant Biology, 2013, 16, 293-300.	7.1	158
26	Analysis of Arabidopsis glutathione-transferases in yeast. Phytochemistry, 2013, 91, 198-207.	2.9	21
27	A LIM Domain Protein from Tobacco Involved in Actin-Bundling and Histone Gene Transcription. Molecular Plant, 2013, 6, 483-502.	8.3	33
28	Stomatal Closure by Fast Abscisic Acid Signaling Is Mediated by the Guard Cell Anion Channel SLAH3 and the Receptor RCAR1. Science Signaling, 2011, 4, ra32.	3.6	338
29	Action of Natural Abscisic Acid Precursors and Catabolites on Abscisic Acid Receptor Complexes Â. Plant Physiology, 2011, 157, 2108-2119.	4.8	49
30	Dissection of glutathione conjugate turnover in yeast. Phytochemistry, 2010, 71, 54-61.	2.9	30
31	Closely related receptor complexes differ in their ABA selectivity and sensitivity. Plant Journal, 2010, 61, 25-35.	5.7	170
32	Cytosolic Action of Phytochelatin Synthase Â. Plant Physiology, 2010, 153, 159-169.	4.8	65
33	ABA perception and signalling. Trends in Plant Science, 2010, 15, 395-401.	8.8	1,106
34	Expression of the Arabidopsis Mutant <i>abi1</i> Gene Alters Abscisic Acid Sensitivity, Stomatal Development, and Growth Morphology in Gray Poplars. Plant Physiology, 2009, 151, 2110-2119.	4.8	72
35	Regulators of PP2C Phosphatase Activity Function as Abscisic Acid Sensors. Science, 2009, 324, 1064-1068.	12.6	2,017
36	Nuclear localization of the mutant protein phosphatase abi1 is required for insensitivity towards ABA responses in Arabidopsis. Plant Journal, 2008, 54, 806-819.	5.7	91

ERWIN GRILL

#	ARTICLE	IF	CITATIONS
37	Phytochelatins are synthesized by two vacuolar serine carboxypeptidases inSaccharomyces cerevisiae. FEBS Letters, 2007, 581, 1681-1687.	2.8	35
38	BOTANY: A Plant Receptor with a Big Family. Science, 2007, 315, 1676-1677.	12.6	18
39	Function of phytochelatin synthase in catabolism of glutathione-conjugates. Plant Journal, 2007, 49, 740-749.	5.7	120
40	A hydraulic signal in rootâ€ŧoâ€shoot signalling of water shortage. Plant Journal, 2007, 52, 167-174.	5.7	464
41	Fibrillin expression is regulated by abscisic acid response regulators and is involved in abscisic acid-mediated photoprotection. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6061-6066.	7.1	115
42	CO2 signaling in guard cells: Calcium sensitivity response modulation, a Ca2+-independent phase, and CO2 insensitivity of the gca2 mutant. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7506-7511.	7.1	174
43	Generation of Active Pools of Abscisic Acid Revealed by In Vivo Imaging of Water-Stressed Arabidopsis. Plant Physiology, 2005, 137, 209-219.	4.8	230
44	Phytochelatin synthase catalyzes key step in turnover of glutathione conjugates. Phytochemistry, 2003, 62, 423-431.	2.9	62
45	The abi1-1 mutation blocks ABA signaling downstream of cADPR action. Plant Journal, 2003, 34, 307-315.	5.7	69
46	Homeodomain protein ATHB6 is a target of the protein phosphatase ABI1 and regulates hormone responses in Arabidopsis. EMBO Journal, 2002, 21, 3029-3038.	7.8	309
47	Hydrogen peroxide is a regulator of ABI1, a protein phosphatase 2C fromArabidopsis. FEBS Letters, 2001, 508, 443-446.	2.8	181
48	[39] Phytochelatins. Methods in Enzymology, 1991, 205, 333-341.	1.0	59