Tine Grebenc

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9113459/publications.pdf

Version: 2024-02-01

72 papers

5,580 citations

257450 24 h-index 91884 69 g-index

75 all docs 75 docs citations

75 times ranked 7954 citing authors

#	Article	IF	CITATIONS
1	Buckwheat Milling Waste Effects on Root Morphology and Mycorrhization of Silver Fir Seedlings Inoculated with Black Summer Truffle (Tuber aestivum Vittad.). Forests, 2022, 13, 240.	2.1	2
2	Has taxonomic vandalism gone too far? A case study, the rise of the pay-to-publish model and the pitfalls of Morchella systematics. Mycological Progress, 2022, 21, 7-38.	1.4	8
3	Differentiation between species and regional origin of fresh and freeze-dried truffles according to their volatile profiles. Food Control, 2021, 123, 107698.	5.5	18
4	First report of European truffle ectomycorrhiza in the semi-arid climate of Saudi Arabia. 3 Biotech, 2021, 11, 24.	2.2	3
5	Effect of earthworms on mycorrhization, root morphology and biomass of silver fir seedlings inoculated with black summer truffle (Tuber aestivum Vittad.). Scientific Reports, 2021, 11, 6167.	3.3	6
6	Global homogenization of the structure and function in the soil microbiome of urban greenspaces. Science Advances, 2021, 7, .	10.3	83
7	Mycorrhization of pecans with European truffles (Tuber spp., Tuberaceae) under southern subtropical conditions. Applied Soil Ecology, 2021, 168, 104108.	4.3	10
8	Potential Link between Ectomycorrhizal Community Composition and Host Tree Phenology. Forests, 2021, 12, 1719.	2.1	1
9	Blind spots in global soil biodiversity and ecosystem function research. Nature Communications, 2020, 11, 3870.	12.8	192
10	Diversity trapped in cages: Revision of Blumenavia Möller (Clathraceae, Basidiomycota) reveals three hidden species. PLoS ONE, 2020, 15, e0232467.	2.5	8
11	Species and geographic variability in truffle aromas. Food and Chemical Toxicology, 2020, 142, 111434.	3.6	44
12	Longistriata flava (Boletaceae, Basidiomycota) – a new monotypic sequestrate genus and species from Brazilian Atlantic Forest. MycoKeys, 2020, 62, 53-73.	1.9	11
13	KEYLINK: towards a more integrative soil representation for inclusion in ecosystem scale models. I. review and model concept. PeerJ, 2020, 8, e9750.	2.0	21
14	PCR primers comparisons for a successful Tuber spp. DNA region amplification in routine identifications / Primerjava PCR zaÄetnih oligonukleotidov za uspeÅino pomnoževanje DNA regije Tuber spp. pri rutinski identifikaciji., 2020, 61, 229-238.	0.1	1
15	Title is missing!. , 2020, 15, e0232467.		O
16	Title is missing!. , 2020, 15, e0232467.		0
17	Title is missing!. , 2020, 15, e0232467.		O
18	Title is missing!. , 2020, 15, e0232467.		0

#	Article	IF	Citations
19	Root-Associated Fungal Communities From Two Phenologically Contrasting Silver Fir (Abies alba) Tj ETQq1 1 0.78	4314 rgBT	lQverlock
20	Hysterangium atlanticum sp. nov., forms ectomycorrhizae with Coccoloba species (Polygonaceae) from the Atlantic rainforest of Northeastern Brazil. Symbiosis, 2019, 78, 275-286.	2.3	5
21	Different belowground responses to elevated ozone and soil water deficit in three European oak species (Quercus ilex, Q. pubescens and Q. robur). Science of the Total Environment, 2019, 651, 1310-1320.	8.0	30
22	Fungos ectomicorrÃzicos em plantações de nogueira-pecã e o potencial da truficultura no Brasil. Ciencia Florestal, 2019, 29, 975.	0.3	3
23	Ectomycorrhizae of Norway spruce from its southernmost natural distribution range in Serbia. IForest, 2019, 12, 43-50.	1.4	1
24	Co-invasion of ectomycorrhizal fungi in the Brazilian Pampa biome. Applied Soil Ecology, 2018, 130, 194-201.	4.3	12
25	Considerations and consequences of allowing DNA sequence data as types of fungal taxa. IMA Fungus, 2018, 9, 167-175.	3.8	45
26	<i>Tuber brennemanii</i> and <i>Tuber floridanum</i> : Two new <i>Tuber</i> species are among the most commonly detected ectomycorrhizal taxa within commercial pecan (<i>Carya illinoinensis</i> orchards. Mycologia, 2018, 110, 780-790.	1.9	14
27	Environment and host as large-scale controls of ectomycorrhizal fungi. Nature, 2018, 558, 243-248.	27.8	282
28	Towards understanding the role of ectomycorrhizal fungi in forest phosphorus cycling: a modelling approach. Central European Forestry Journal, 2018, 64, 79-95.	0.8	8
29	The (re)discovery of ectomycorrhizal symbioses in Neotropical ecosystems sketched in Florianópolis. New Phytologist, 2017, 214, 920-923.	7.3	18
30	Scleroderma areolatum ectomycorrhiza on Fagus sylvatica L Mycorrhiza, 2017, 27, 283-293.	2.8	12
31	Hypogeous sequestrate fungi in South America – how well do we know them?. Symbiosis, 2017, 71, 9-17.	2.3	17
32	Characterization of natural habitats and diversity of Libyan desert truffles. 3 Biotech, 2017, 7, 328.	2.2	6
33	Russula ahmadii (Basidiomycota, Russulales), a new species in section Ingratae and its ectomycorrhiza from coniferous forests of Pakistan. Phytotaxa, 2017, 321, 241.	0.3	10
34	High-quality genome sequence of the radioresistant bacterium Deinococcus ficus KS 0460. Standards in Genomic Sciences, 2017, 12, 46.	1.5	10
35	Sclerotium-forming fungi from soils of the Atlantic rainforest of Northeastern Brazil. Plant Ecology and Evolution, 2017, 150, 358-362.	0.7	2
36	Antibacterial Activity of Wild Mushroom Extracts on Bacterial Wilt Pathogen Ralstonia solanacearum. Plant Disease, 2016, 100, 453-464.	1.4	11

#	Article	IF	CITATIONS
37	Multilocus phylogenetic analyses reveal unexpected abundant diversity and significant disjunct distribution pattern of the Hedgehog Mushrooms (Hydnum L.). Scientific Reports, 2016, 6, 25586.	3.3	29
38	Molecular and morphological analyses confirm Rhizopogon verii as a widely distributed ectomycorrhizal false truffle in Europe, and its presence in South America. Mycorrhiza, 2016, 26, 377-388.	2.8	22
39	Fungal Planet description sheets: 400–468. Persoonia: Molecular Phylogeny and Evolution of Fungi, 2016, 36, 316-458.	4.4	193
40	<i>Restingomyces</i> , a new sequestrate genus from the Brazilian Atlantic rainforest that is phylogenetically related to early-diverging taxa in Trappeaceae (Phallales). Mycologia, 2016, 108, 954-966.	1.9	13
41	Differential short-term response of functional groups to a change in forest management in a temperate forest. Forest Ecology and Management, 2016, 376, 256-264.	3.2	35
42	<i>Tuber petrophilum</i> , a new truffle species from Serbia. Mycotaxon, 2016, 130, 1141-1152.	0.3	6
43	Ectomycorrhizal fungal community associated with autochthonous white poplar from Serbia. IForest, 2016, 9, 330-336.	1.4	6
44	Association of ectomycorrhizal fungi with Picea crassifolia (Pinaceae, Piceoidae) from high-altitude stands in Mount Helan Nature Reserve, China. Genetics and Molecular Research, 2016, 15, .	0.2	3
45	Sebacina aureomagnifica, a new heterobasidiomycete from the Atlantic Forest of northeast Brazil. Mycological Progress, 2015, 14, 1.	1.4	6
46	Notes on mycophagy of Descomyces albus (Basidiomycota) in southern Brazil. Mycosphere, 2015, 6, 620-629.	6.1	4
47	Mycorrhizal status of an ozone-sensitive poplar clone treated with the antiozonant ethylene diurea. European Journal of Forest Research, 2014, 133, 735-743.	2.5	15
48	Simulating ectomycorrhizal fungi and their role in carbon and nitrogen cycling in forest ecosystems. Canadian Journal of Forest Research, 2014, 44, 535-553.	1.7	41
49	The cultivation of oak seedlings inoculated with Tuber aestivum Vittad. in the boreal region of Finland. Mycological Progress, 2014, 13, 373-380.	1.4	10
50	Towards a unified paradigm for sequenceâ€based identification of fungi. Molecular Ecology, 2013, 22, 5271-5277.	3.9	2,997
51	Mycorrhizosphere Complexity. Developments in Environmental Science, 2013, 13, 151-177.	0.5	5
52	Biogeography of ectomycorrhizal fungi associated with alders (<i><scp>A</scp>lnus</i> > spp.) in relation to biotic and abiotic variables at the global scale. New Phytologist, 2013, 198, 1239-1249.	7.3	191
53	Two new species of <i>Hydnum</i> with ovoid basidiospores: <i>H. ovoideisporum</i> and <i>H. vesterholtii</i> Mycologia, 2012, 104, 1443-1455.	1.9	21
54	Brown rotting fungus closely related to Pseudomerulius curtisii (Boletales) recorded for the first time in South America Mycosphere, 2012, 3, 533-541.	6.1	14

#	Article	IF	Citations
55	Ectomycorrhizal fungi from southern Brazil – a literature-based review, their origin and potential hosts. Mycosphere, 2012, 4, 61-95.	6.1	27
56	Ectomycorrhizal communities in a productive Tuber aestivum Vittad. orchard: composition, host influence and species replacement. FEMS Microbiology Ecology, 2011, 76, 170-184.	2.7	54
57	Genetic Differentiation of the Western Capercaillie Highlights the Importance of South-Eastern Europe for Understanding the Species Phylogeography. PLoS ONE, 2011, 6, e23602.	2.5	27
58	Enhanced ozone strongly reduces carbon sink strength of adult beech (Fagus sylvatica) – Resume from the free-air fumigation study at Kranzberg Forest. Environmental Pollution, 2010, 158, 2527-2532.	7.5	140
59	Response of ectomycorrhizal community structure to gap opening in natural and managed temperate beech-dominated forests. Canadian Journal of Forest Research, 2009, 39, 1375-1386.	1.7	39
60	Ribosomal ITS diversity among the European species of the genus Hydnum (Hydnaceae). Anales Del Jardin Botanico De Madrid, 2009, 66, 121-132.	0.4	22
61	Ozone Stress and Ectomycorrhizal Root–Shoot Signaling. , 2008, , 337-357.		4
62	Fine roots and ectomycorrhizas as indicators of environmental change. Plant Biosystems, 2007, 141, 406-425.	1.6	91
63	Variation in fine root biomass of three European tree species: Beech (<i>Fagus sylvatica</i> L.), Norway spruce (<i>Picea abies</i> L. Karst.), and Scots pine (<i>Pinus sylvestris</i> L.). Plant Biosystems, 2007, 141, 394-405.	1.6	189
64	Changes in the Community of Ectomycorrhizal Fungi and Increased Fine Root Number Under Adult Beech Trees Chronically Fumigated with Double Ambient Ozone Concentration. Plant Biology, 2007, 9, 279-287.	3.8	54
65	Effects of Long-Term Free-Air Ozone Fumigation on $\hat{l}'15N$ and Total N in Fagus sylvatica and Associated Mycorrhizal Fungi. Plant Biology, 2007, 9, 242-252.	3.8	41
66	CASIROZ: Root Parameters and Types of Ectomycorrhiza of Young Beech Plants Exposed to Different Ozone and Light Regimes. Plant Biology, 2007, 9, 298-308.	3.8	29
67	Types of Ectomycorrhiza as Pollution Stress Indicators: Case Studies in Slovenia. Environmental Monitoring and Assessment, 2007, 128, 31-45.	2.7	16
68	Types of Ectomycorrhiza of Mature Beech and Spruce at Ozone-Fumigated and Control Forest Plots. Environmental Monitoring and Assessment, 2007, 128, 47-59.	2.7	33
69	Phylogenetic relationships in tribe Spiraeeae (Rosaceae) inferred from nucleotide sequence data. Plant Systematics and Evolution, 2007, 266, 105-118.	0.9	54
70	Diversity of dead wood inhabiting fungi and bryophytes in semi-natural beech forests in Europe. Biological Conservation, 2006, 131, 58-71.	4.1	193
71	First report of Botryosphaeria dothidea causing bark dieback of European hop hornbeam in Slovenia Plant Pathology, 2006, 55, 299-299.	2.4	20
72	History, genetic differentiation and conservation strategies for disjunct populations of Sibiraea species from Southeastern Europe and Asia. Conservation Genetics, 2006, 7, 895-907.	1.5	10